Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(50): 47938-47953, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144124

RESUMEN

The Ediacaran Doushantuo phosphate deposit in Kaiyang, Guizhou Province, China, contains thick phosphate ores. Most of the ores are reconstituted phosphorite, and there have been few studies of the primary phosphorites, which has led to controversy regarding the origins and nature of mineralization of these phosphate-rich deposits. We identified high-grade primary phosphorites in the Kaiyang area and undertook a stratigraphic, petrological, sedimentological, geochemical, and isotopic study of these rocks. Moving up-section, the Longshui phosphate ore deposit comprises granular, micritic, stromatolitic, honeycomb, and sandy phosphorites. The first four types of phosphorite contain abundant biological structures, such as spherical, lobe-like, and amorphous forms. These are mainly fossils of benthic multicellular red algae, along with other types of algae. These fossils comprise >70% of the phosphorites, indicating that these are protist phosphorites. The ores are massive, unstratified, and contain numerous layered cavity structures, indicating that the ore bed was originally a reef. The phosphorites have P2O5 contents of 38.6-40.2 wt %, with an average of 38.9 wt %. The Al2O3 + TiO2 values are 0.02-0.44 wt %. The δ18O values of the samples vary from 13.76 to 16.57‰, with an average of 14.60‰, and δ13C values range from -15.789 to -8.697‰, with an average of -13.133‰. The samples exhibit rare-earth element patterns that are enriched with middle rare-earth elements and have strongly negative Ce anomalies. The geochemical features show that the reef was deposited in clear and oxidized waters. The discovery of this high-grade protist phosphorite shows that the involvement of algae was key to the formation of the Kaiyang phosphate-rich deposit.

2.
PeerJ ; 9: e12217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631322

RESUMEN

Moulting behaviors in trilobites are a crucial strategy during development. Previous studies have demonstrated inter-and intraspecific variability of moulting behavior in trilobites. Currently, ecdysial motifs for trilobites are considered not stable even within species and fewer detailed studies dealt with moulting behaviors in a single species of trilobite during development. Here a large sample of meraspid to holaspid exuviae of Arthricocephalites xinzhaiheensis (131 specimens) from the Cambrian Balang Formation of South China has allowed description of the reasonably complete ontogenic moulting sequence. Both ontogenetic stage and body size reveal gradual transition of configuration from Somersault configuration to Henningsmoen's configuration during development. Somersault configuration is exclusive till meraspid degree five and exists in subsequent growth stages. This suggests that opening of the facial and rostral sutures allowing the emergence forward of the post-ecdysial trilobite was prevalent in early growth stages. In later development, Henningsmoen's configuration (showing disarticulation of the cranidium) became more dominant. This study indicates that gradual transition of ontogenetic moulting behavior occurred in oryctocephalid trilobites in the early Cambrian.

3.
Anal Chem ; 93(45): 15063-15071, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34706540

RESUMEN

In this work, a novel integrated dielectric barrier discharge (IDBD) reactor coupled to an electrothermal vaporizer (ETV) was established for arsenic determination. It is for the first time gas-phase enrichment (GPE) was fulfilled based on the hyphenation of ETV and DBD. The mechanisms of evolution of arsenic atomic and molecular species during vaporization, transportation, trapping, and release processes were investigated via X-ray photoelectron spectroscopy (XPS) and other approaches. Tentative mechanisms were deduced as follows: the newly designed DBD atomizer (DBDA) tube upstream to the air inlet fulfills the atomization of arsenic nanoparticles in vaporized aerosol, leading to free arsenic atoms that are indispensable for forming arsenic oxides; the DBD trap (DBDT) tube traps arsenic oxides under an O2-domininating atmosphere and then releases arsenic atoms under H2-dominating atmospheres. In essence, this process is a physical-chemical process rather than an electrostatic particle deposition. Such a trap and release sequence separates matrix interference and enhances analytical sensitivity. Under the optimized conditions, the method detection limit (LOD) was 0.04 mg/kg and the relative standard deviations (RSDs) were within 6% for As standard solution and real seafood samples, indicating adequate analytical sensitivity and precision. The mean spiked recoveries for laver, kelp, and Undaria pinnatifida samples were 95-110%, and the results of the certified reference materials (CRMs) were consistent with certified values. This ETV-DBD preconcentration scheme is easy and green and has low cost for As analysis in seafood samples. DBD was proved a novel ETV transportation enhancement and preconcentration technique for arsenic, revealing its potential in rapid arsenic analysis based on direct solid sampling ETV instrumentation.


Asunto(s)
Arsénico , Espectrofotometría Atómica , Volatilización
4.
Anal Sci ; 37(2): 321-327, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32921651

RESUMEN

A direct sampling hydride generation (HG) system based on modified gas liquid separator (GLS) coupled with in situ dielectric barrier discharge (DBD) is first rendered to detect lead in blood samples. Herein, a triple-layer coaxial quartz tube was employed as DBD trap (DBDT) to replace the original atomizer of atomic fluorescence spectrometry (AFS) to satisfy the in situ preconcentration. After 40-fold dilution, foams generated from protein in a blood sample can be eliminated via the double-GLS set; and lead in a blood sample were generated as plumbane under 3.5% HNO3 (v:v) and 30 g/L NaOH with 8 g/L KBH4, 10 g/L H3BO3, and 5 g/L K3[Fe(CN)6]. Then, lead analyte was trapped on the DBD quartz surface by 9 kV discharging at 50 mL/min air; and subsequently released by 12 kV discharging at 110 mL/min H2. The absolute detection limit (LOD) for Pb was 8 pg (injection volume = 2 mL), and the linearity (R2 > 0.997) range was 0.05 - 50 µg/L. The results were in good agreement with that of blood certified reference materials (CRM), and spiked recoveries for real blood samples were 95 - 104% within a relative standard deviation of 5% (RSD). Via gas phase enrichment, the established method improved analytical sensitivity (peak height) by 8 times. The entire analysis time including blood sample preparation can be kept to within 10 min. The combination of modified GLS and DBDT can facilitate the quickness, accuracy, and sensitivity, revealing a promising future for monitoring lead in blood to protect humans, especially children's health.


Asunto(s)
Plomo/sangre , Humanos , Espectrometría de Fluorescencia , Espectrofotometría Atómica
5.
Talanta ; 218: 121161, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32797916

RESUMEN

In this work, a portable and reliable optical emission spectrometric (OES) instrument based on solid acid hydride generation (HG) and subsequent in situ dielectric barrier discharge (DBD) preconcentration was first developed for simultaneous and field analysis of ultratrace As and Sb in environmental water. In situ DBD fulfilled both gas phase enrichment (GPE) and excitation; effective enrichment made it possible to use a low-cost charge coupled device (CCD) as detector. To simplify field protocol, solid tablet made from sulfamic acid was first used to replace hydrochloric acid for co-generation of As and Sb hydrides. Moisture interference was eliminated by carrier gas sweeping without any desiccant. After calculating peak volume for emission data handling, detection limits (LODs) were 0.5 µg L-1 for As and 0.2 µg L-1 for Sb, respectively, with <3% relative standard deviations (RSDs) at 10 µg L-1; linear dynamic ranges (R2>0.995) were 2-200 µg L-1 for As and 1-200 µg L-1 for Sb, respectively. The results agreed with certified values of CRMs and recoveries were 87-97% vs. inductively coupled plasma mass spectrometry. The running costs can be controlled within one dollar per use. This HG-in situ DBD trap-OES scheme, with demonstrated advantages in sensitivity, low-cost, power (<60 W), size (0.6 m × 0.5 m × 0.3 m), weight (15 kg), gas consumption (300 measurements per 4 L tank), and multi-element capability, was implemented in a miniature spectrometer for field analysis.

6.
Anal Chim Acta ; 1121: 42-49, 2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32493588

RESUMEN

In this work, dielectric barrier discharge (DBD) was first utilized to eliminate gaseous phase interference from complicated solid sample. So, a novel solid sampling Hg analyzer was first designed using a coaxial DBD reactor to replace catalytic pyrolysis furnace for sensitive mercury determination in aquatic food samples. The Hg analyzer mainly comprised an electrothermal vaporizer (ETV), a DBD reactor to decompose gaseous interfering substances including volatile organic compounds (VOCs), a gold-coil Hg trap to eliminate matrix interference and an atomic fluorescence spectrometer (AFS) as detector. These units were connected by a manifold integrating air and Ar/H2 (v/v = 9 : 1), fulfilling on-line decomposition of up to 12 mg dried aquatic food powder at ambient temperature. The proposed method detection limit (LOD) was 0.5 µg/kg and the relative standard deviations (RSDs) were within 5% for Hg standards as well as within 10% for real samples, indicating adequate analytical sensitivity and precision. In addition, the on-line DBD reactor consumes only 40 W, which is obviously lower than that (>300 W) of the commercial Hg analyzers; including the sample pre-treatment, the overall analysis could be completed within 5 min. This method is easier, greener and safer for Hg analysis in real samples obviating chemical reagents. The new DBD apparatus can facilitate the miniaturization and portability with low power consumption and instrumental size revealing its promising potential in direct Hg analysis instrumentation development.


Asunto(s)
Análisis de los Alimentos/métodos , Gases/química , Mercurio/análisis , Análisis de los Alimentos/instrumentación , Límite de Detección , Miniaturización , Espectrofotometría Atómica , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...