Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Vet Clin Pathol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684482

RESUMEN

A 9-year-old dog was presented with weight loss, respiratory effort, and an enlarged abdomen. Imaging studies and exploratory surgery showed pulmonary and splenic masses and bi-cavitary effusion, later classified as hemorrhage. Cytology of the peritoneal and pleural fluids also revealed several microfilariae. Immunologic and molecular analyses confirmed Dirofilaria immitis infection and histopathology of the spleen indicated a cavernous endothelial proliferation with undefined etiology (hemangiosarcoma vs reaction to parasite infestation). The nematode larvae are speculated to have entered body cavities via erratic migration or via hemorrhage and visceral lesions to be related to parasitism. Nematode infection should be considered as a differential diagnosis for internal bleeding of undetermined origin.

2.
PLoS Negl Trop Dis ; 17(12): e0011829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100522

RESUMEN

Toxoplasma gondii is a zoonotic parasite that can cause severe morbidity and mortality in warm-blooded animals, including marine mammals such as sea otters. Free-ranging cats can shed environmentally resistant T. gondii oocysts in their feces, which are transported through rain-driven runoff from land to sea. Despite their large population sizes and ability to contribute to environmental oocyst contamination, there are limited studies on T. gondii oocyst shedding by free-ranging cats. We aimed to determine the frequency and genotypes of T. gondii oocysts shed by free-ranging domestic cats in central coastal California and evaluate whether genotypes present in feces are similar to those identified in sea otters that died from fatal toxoplasmosis. We utilized a longitudinal field study of four free-ranging cat colonies to assess oocyst shedding prevalence using microscopy and molecular testing with polymerase chain reaction (PCR). T. gondii DNA was confirmed with primers targeting the ITS1 locus and positive samples were genotyped at the B1 locus. While oocysts were not visualized using microscopy (0/404), we detected T. gondii DNA in 25.9% (94/362) of fecal samples. We genotyped 27 samples at the B1 locus and characterized 13 of these samples at one to three additional loci using multi locus sequence typing (MLST). Parasite DNA detection was significantly higher during the wet season (16.3%, 59/362) compared to the dry season (9.7%; 35/362), suggesting seasonal variation in T. gondii DNA presence in feces. High diversity of T. gondii strains was characterized at the B1 locus, including non-archetypal strains previously associated with sea otter mortalities. Free-ranging cats may thus play an important role in the transmission of virulent T. gondii genotypes that cause morbidity and mortality in marine wildlife. Management of free-ranging cat colonies could reduce environmental contamination with oocysts and subsequent T. gondii infection in endangered marine mammals and people.


Asunto(s)
Enfermedades de los Gatos , Nutrias , Toxoplasma , Toxoplasmosis Animal , Humanos , Gatos , Animales , Animales Salvajes , Toxoplasma/genética , Tipificación de Secuencias Multilocus , Prevalencia , Nutrias/genética , Nutrias/parasitología , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología , ADN Protozoario/genética , ADN Protozoario/análisis , California/epidemiología , Heces/parasitología , Oocistos , Enfermedades de los Gatos/epidemiología
3.
Int J Food Microbiol ; 407: 110391, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37742524

RESUMEN

The presence of foodborne protozoan pathogens including Cryptosporidium parvum, Giardia duodenalis, Toxoplasma gondii, and Cyclospora cayetanensis in commercial shellfish has been reported across diverse geographical regions. In the present study, a novel multiplex nested polymerase chain reaction (PCR) assay was validated to simultaneously detect and discriminate these four targeted parasites in oyster tissues including whole tissue homogenate, digestive gland, gills, and hemolymph, as well as seawater where shellfish grow. To differentiate viable and non-viable protozoan (oo)cysts, we further evaluated reverse transcription quantitative PCR (RT-qPCR) assays through systematic laboratory spiking experiments by spiking not only dilutions of viable parasites but also mixtures of viable and non-viable parasites in the oyster tissues and seawater. Results demonstrate that multiplex PCR can detect as few as 5-10 (oo)cysts in at least one oyster matrix, as well as in 10 L of seawater. All parasites were detected at the lowest spiking dilution (5 (oo)cysts per extract) in hemolymph, however the probability of detection varied across the difference matrices tested for each parasite. RT-qPCR further discriminated viable from non-viable (heat-inactivated) C. parvum and T. gondii in seawater and hemolymph but did not perform well in other oyster matrices. This systematic spiking study demonstrates that a molecular approach combining multiplex PCR for sensitive and affordable screening of protozoan DNA and subsequent RT-qPCR assay for viability discrimination presents an important advance for accurately determining the risk of protozoal illness in humans due to consumption of contaminated shellfish.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Ostreidae , Animales , Humanos , Cryptosporidium/genética , Criptosporidiosis/parasitología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Agua de Mar , ADN Protozoario
4.
Pathogens ; 12(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37513717

RESUMEN

Toxoplasma gondii is a globally distributed zoonotic protozoan parasite. Infection with T. gondii can cause congenital toxoplasmosis in developing fetuses and acute outbreaks in the general population, and the disease burden is especially high in South America. Prior studies found that the environmental stage of T. gondii, oocysts, is an important source of infection in Brazil; however, no studies have quantified this risk relative to other parasite stages. We developed a Bayesian quantitative risk assessment (QRA) to estimate the relative attribution of the two primary parasite stages (bradyzoite and oocyst) that can be transmitted in foods to people in Brazil. Oocyst contamination in fruits and greens contributed significantly more to overall estimated T. gondii infections than bradyzoite-contaminated foods (beef, pork, poultry). In sensitivity analysis, treatment, i.e., cooking temperature for meat and washing efficiency for produce, most strongly affected the estimated toxoplasmosis incidence rate. Due to the lack of regional food contamination prevalence data and the high level of uncertainty in many model parameters, this analysis provides an initial estimate of the relative importance of food products. Important knowledge gaps for oocyst-borne infections were identified and can drive future studies to improve risk assessments and effective policy actions to reduce human toxoplasmosis in Brazil.

5.
PLoS One ; 18(6): e0286808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37343040

RESUMEN

Toxoplasma gondii is a ubiquitous zoonotic parasite that can infect warm-blooded vertebrates, including humans. Felids, the definitive hosts, drive T. gondii infections by shedding the environmentally resistant stage of the parasite (oocysts) in their feces. Few studies characterize the role of climate and anthropogenic factors in oocyst shedding among free-ranging felids, which are responsible for the majority of environmental contamination. We determined how climate and anthropogenic factors influence oocyst shedding in free-ranging domestic cats and wild felids using generalized linear mixed models. T. gondii oocyst shedding data from 47 studies were systematically reviewed and compiled for domestic cats and six wild felid species, encompassing 256 positives out of 9,635 total fecal samples. Shedding prevalence in domestic cats and wild felids was positively associated with human population density at the sampling location. Larger mean diurnal temperature range was associated with more shedding among domestic cats and warmer temperature in the driest quarter was associated with lower oocyst shedding in wild felids. Increasing human population density and temperature fluctuation can exacerbate environmental contamination with the protozoan parasite T. gondii. Management of free-ranging domestic cats could lower the burden of environmental oocysts due to their large population sizes and affinity with human settlements.


Asunto(s)
Enfermedades de los Gatos , Felidae , Parásitos , Toxoplasma , Toxoplasmosis Animal , Gatos , Animales , Humanos , Densidad de Población , Temperatura , Prevalencia , Oocistos , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología , Felidae/parasitología , Heces/parasitología
6.
Sci Total Environ ; 858(Pt 1): 159680, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306854

RESUMEN

Wastewater-based epidemiology (WBE) has been deployed broadly as an early warning tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify communities with high transmission, enabling quick and effective responses. As the wastewater (WW) becomes an increasingly important indicator for COVID-19 transmission, more robust methods and metrics are needed to guide public health decision-making. This research aimed to develop and implement a mathematical framework to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in WW. We propose a classification scheme to assess the adequacy of model training periods based on clinical testing rates and assess the sensitivity of model predictions to training periods. A testing period is classified as adequate when the rate of change in testing is greater than the rate of change in cases. We present a Bayesian deconvolution and linear regression model to estimate COVID-19 cases from WW data. The effective reproductive number is estimated from reconstructed cases using WW. The proposed modeling framework was applied to three Northern California communities served by distinct WW treatment plants. The results showed that training periods with adequate testing are essential to provide accurate projections of COVID-19 incidence.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Carga Viral , Incidencia , COVID-19/epidemiología , SARS-CoV-2 , Teorema de Bayes
7.
mSphere ; 7(6): e0017722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36218344

RESUMEN

Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Aguas Residuales , Pandemias
8.
PLoS One ; 17(4): e0267212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452479

RESUMEN

Testing surfaces in school classrooms for the presence of SARS-CoV-2, the virus that causes COVID-19, can provide public-health information that complements clinical testing. We monitored the presence of SARS-CoV-2 RNA in five schools (96 classrooms) in Davis, California (USA) by collecting weekly surface-swab samples from classroom floors and/or portable high-efficiency particulate air (HEPA) units (n = 2,341 swabs). Twenty-two surfaces tested positive, with qPCR cycle threshold (Ct) values ranging from 36.07-38.01. Intermittent repeated positives in a single room were observed for both floor and HEPA filter samples for up to 52 days, even following regular cleaning and HEPA filter replacement after a positive result. We compared the two environmental sampling strategies by testing one floor and two HEPA filter samples in 57 classrooms at Schools D and E. HEPA filter sampling yielded 3.02% and 0.41% positivity rates per filter sample collected for Schools D and E, respectively, while floor sampling yielded 0.48% and 0% positivity rates. Our results indicate that HEPA filter swabs are more sensitive than floor swabs at detecting SARS-CoV-2 RNA in interior spaces. During the study, all schools were offered weekly free COVID-19 clinical testing through Healthy Davis Together (HDT). HDT also offered on-site clinical testing in Schools D and E, and upticks in testing participation were observed following a confirmed positive environmental sample. However, no confirmed COVID-19 cases were identified among students associated with classrooms yielding positive environmental samples. The positive samples detected in this study appeared to contain relic viral RNA from individuals infected before the monitoring program started and/or RNA transported into classrooms via fomites. High-Ct positive results from environmental swabs detected in the absence of known active infections supports this conclusion. Additional research is needed to differentiate between fresh and relic SARS-CoV-2 RNA in environmental samples and to determine what types of results should trigger interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Polvo , Monitoreo del Ambiente , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Instituciones Académicas
9.
Sci Rep ; 12(1): 6532, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474071

RESUMEN

Plastics are widely recognized as a pervasive marine pollutant. Microplastics have been garnering increasing attention due to reports documenting their ingestion by animals, including those intended for human consumption. Their accumulation in the marine food chain may also pose a threat to wildlife that consume species that can accumulate microplastic particles. Microplastic contamination in marine ecosystems has thus raised concerns for both human and wildlife health. Our study addresses an unexplored area of research targeting the interaction between plastic and pathogen pollution of coastal waters. We investigated the association of the zoonotic protozoan parasites Toxoplasma gondii, Cryptosporidium parvum, and Giardia enterica with polyethylene microbeads and polyester microfibers. These pathogens were chosen because they have been recognized by the World Health Organization as underestimated causes of illness from shellfish consumption, and due to their persistence in the marine environment. We show that pathogens are capable of associating with microplastics in contaminated seawater, with more parasites adhering to microfiber surfaces as compared with microbeads. Given the global presence of microplastics in fish and shellfish, this study demonstrates a novel pathway by which anthropogenic pollutants may be mediating pathogen transmission in the marine environment, with important ramifications for wildlife and human health.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Parásitos , Contaminantes Químicos del Agua , Animales , Animales Salvajes , Ecosistema , Humanos , Microplásticos , Plásticos , Agua de Mar , Contaminantes Químicos del Agua/análisis
11.
ACS ES T Water ; 2(11): 2114-2124, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552742

RESUMEN

Wastewater-based epidemiology (WBE) is a useful complement to clinical testing for managing COVID-19. While community-scale wastewater and clinical data frequently correlate, less is known about subcommunity relationships between the two data types. Moreover, nondetects in qPCR wastewater data are typically handled through methods known to bias results, overlooking perhaps better alternatives. We address these knowledge gaps using data collected from September 2020-June 2021 in Davis, California (USA). We hypothesize that coupling the expectation maximization (EM) algorithm with the Markov Chain Monte Carlo (MCMC) method could improve estimation of "missing" values in wastewater qPCR data. We test this hypothesis by applying EM-MCMC to city wastewater treatment plant data and comparing output to more conventional nondetect handling methods. Dissimilarities in results (i) underscore the importance of specifying nondetect handling method in reporting and (ii) suggest that using EM-MCMC may yield better agreement between community-scale clinical and wastewater data. We also present a novel framework for spatially aligning clinical data with wastewater data collected upstream of a treatment plant (i.e., distributed across a sewershed). Applying the framework to data from Davis reveals reasonable agreement between wastewater and clinical data at highly granular spatial scales-further underscoring the public-health value of WBE.

12.
Transbound Emerg Dis ; 69(5): 2412-2423, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153160

RESUMEN

Oocyst shedding in domestic and wild felids is a critical yet understudied topic in Toxoplasma gondii ecology and epidemiology that shapes human and animal disease burden. We synthesized published literature dating from the discovery of felids as the definitive hosts of T. gondii in the 1960s through March 2021 to examine shedding prevalence, oocyst genotypes, and risk factors for shedding. Oocyst shedding prevalence in many geographic regions exceeded the commonly accepted 1% reported for domestic cats; crude prevalence from cross-sectional field studies of domestic cat shedding ranged from 0% in Australia to 18.8% in Africa, with greater variation in reports of oocyst shedding in free-ranging, wild felids. Shedding in wild felid species has primarily been described in captive animals, with attempted detection of oocyst shedding reported in at least 31 species. Differences in lifestyle and diet play an important role in explaining shedding variation between free-ranging unowned domestic cats, owned domestic cats and wild felids. Additional risk factors for shedding include the route of infection, diet, age and immune status of the host. It is widely reported that cats only shed oocysts after initial infection with T. gondii, but experimental studies have shown that repeat oocyst shedding can occur. Factors associated with repeat shedding are common amongst free-ranging felids (domestic and wild), which are more likely to eat infected prey, be exposed to diverse T. gondii genotypes, and have coinfections with other parasites. Repeat shedding events could play a significant yet currently ignored role in shaping environmental oocyst loading with implications for human and animal exposure. Oocyst presence in the environment is closely linked to climate variables such as temperature and precipitation, so in quantifying risk of exposure, it is important to consider the burden of T. gondii oocysts that can accumulate over time in diverse environmental matrices and sites, as well as the spatial heterogeneity of free-ranging cat populations. Key directions for future research include investigating oocyst shedding in under-sampled regions, genotyping of oocysts detected in faeces and longitudinal studies of oocyst shedding in free-ranging felids.


Asunto(s)
Enfermedades de los Gatos , Felidae , Toxoplasma , Toxoplasmosis Animal , Animales , Gatos , Estudios Transversales , Heces/parasitología , Humanos , Oocistos , Toxoplasma/genética , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/parasitología
13.
J Wildl Dis ; 57(4): 856-864, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516653

RESUMEN

Sarcocystis spp. are protozoan parasites that cause a spectrum of lesions in various hosts. Hepatic sarcocystosis and encephalitis have been described in captive American black bears (Ursus americanus) and polar bears (Ursus maritimus), and in a free-ranging grizzly bear (Ursus arctos horribilis), but have not previously been reported in free-ranging American black bears. This study aimed to characterize the presence and lesions associated with Sarcocystis spp. in free-ranging bears in British Columbia, Canada from samples submitted to the provincial diagnostic laboratory. From 2007 to 2019, 102 free-ranging American black bear and grizzly bear tissues were examined postmortem for sarcocystosis using histopathology and follow-up molecular diagnostics. Sarcocystosis was confirmed in 41 (40%) free-ranging bears including 39 American black bears and two grizzly bears. Microscopic lesions included multifocal necrotizing hepatitis, nonsuppurative encephalitis, and/or intramuscular sarcocysts with or without associated inflammation. Sarcocystosis was considered the cause of death in eight (20%) of these bears, exclusively in cubs of the year (<1 yr old). Sarcocystis canis was identified in 22/32 (69%) cases where molecular characterization was performed and was the etiologic agent associated with bears that died of sarcocystosis. Confirmed cases were distributed widely across British Columbia. While there was an alternate proximate cause of death in the other confirmed bears, sarcocystosis may have contributed. Age was a significant risk factor, with yearlings presenting more often with fulminant lesions; however, there was a sampling bias toward juvenile bear submissions due to size and ease of transport. Further research is needed to understand the disease epidemiology and significance to population health.


Asunto(s)
Encefalitis , Sarcocystis , Sarcocistosis , Ursidae , Animales , Colombia Británica/epidemiología , Encefalitis/veterinaria , Sarcocistosis/epidemiología , Sarcocistosis/veterinaria , Ursidae/parasitología
14.
Int J Food Microbiol ; 360: 109315, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34215423

RESUMEN

Food and waterborne protozoan pathogens including Cryptosporidium parvum, Giardia enterica and Toxoplasma gondii are a global concern for human public health. While all three pathogens have been detected in commercial shellfish, there is currently no standard approach for detecting protozoan parasites in shellfish. Common molecular and microscopic methods are limited in the number of pathogens they can simultaneously detect and are often targeted at one or two of these pathogens. Previously, we developed and validated a novel 18S amplicon-based next-generation sequencing assay for simultaneous detection of Cryptosporidium spp., Giardia spp. and T. gondii in shellfish. In this study, we applied the assay for protozoan pathogen detection in wild oysters from Prince Edward Island (PEI). Oysters were harvested from restricted and prohibited areas, classified by the Canadian government according to fecal coliform counts in surrounding waters, and different fractions (whole tissue homogenate and hemolymph) were analyzed. Protozoan DNA was detected using metabarcoding in 28%, of oysters tested (N = 128), and the pathogen read counts in oyster homogenate were considerably higher than those in hemolymph. Protozoan read count thresholds were established for classifying probable oyster contamination with pathogens to account for low levels of background protozoan reads detected in negative controls. Assay results showed protozoan contamination was not associated with harvesting site classifications, suggesting that using fecal indicators for ensuring food safety may be insufficient. Due to the complex matrix, an oyster DNA reduction step may further improve the pathogen detection sensitivity of the assay. Results from this study affirm that novel metabarcoding is a promising screening tool for detection of protozoan pathogens in shellfish.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Ostreidae , Animales , Canadá , Cryptosporidium/genética , ADN Protozoario/genética , Humanos , Isla del Principe Eduardo
15.
Ecohealth ; 18(1): 84-94, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34213686

RESUMEN

Increasing reports of marine mammal deaths have been attributed to the parasite Sarcocystis neurona. Infected opossums, the only known definitive hosts, shed S. neurona sporocysts in their feces. Sporocysts can contaminate the marine environment via overland runoff, and subsequent ingestion by marine mammals can lead to fatal encephalitis. Our aim was to determine the prevalence of S. neurona in opossums from coastal areas of Washington State (USA) and to compare genetic markers between S. neurona in opossums and marine mammals. Thirty-two road-kill opossums and tissue samples from 30 stranded marine mammals meeting inclusion criteria were included in analyses. Three opossums (9.4%) and twelve marine mammals (40%) were confirmed positive for S. neurona via DNA amplification at the ITS1 locus. Genetic identity at microsatellites (sn3, sn7, sn9) and the snSAG3 gene of S. neurona was demonstrated among one harbor porpoise and two opossums. Watershed mapping further demonstrated plausible sporocyst transport pathways from one of these opossums to the location where an infected harbor porpoise carcass was recovered. Our results provide the first reported link between S. neurona genotypes on land and sea in the Pacific Northwest, and further demonstrate how terrestrial pathogen pollution can impact the health of marine wildlife.


Asunto(s)
Caniformia , Didelphis , Sarcocystis , Sarcocistosis , Animales , Noroeste de Estados Unidos , Sarcocystis/genética , Sarcocistosis/epidemiología , Sarcocistosis/parasitología , Sarcocistosis/veterinaria
16.
Food Microbiol ; 99: 103816, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119101

RESUMEN

Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.


Asunto(s)
Cryptosporidium parvum/aislamiento & purificación , Parasitología de Alimentos/métodos , Giardia/aislamiento & purificación , Spinacia oleracea/parasitología , Toxoplasma/aislamiento & purificación , Animales , Azidas/química , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cryptosporidium parvum/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Giardia/química , Giardia/genética , Giardia/crecimiento & desarrollo , Oocistos/química , Oocistos/crecimiento & desarrollo , Oocistos/aislamiento & purificación , Hojas de la Planta/parasitología , Propidio/análogos & derivados , Propidio/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo
17.
Zoonoses Public Health ; 68(3): 277-283, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33655709

RESUMEN

The prevalence of Toxoplasma gondii exposure in Inuit living in Nunavut (20%) is twice that of the US (11%); however, routes of exposure for Inuit communities in North America are unclear. Exposure to T. gondii in humans has been linked with consumption of raw or undercooked shellfish that can accumulate environmentally resistant oocysts. Bivalve shellfish, such as clams, are an important, nutritious, affordable and accessible source of food in many Northern Communities. To date, presence of T. gondii in clams in Northern Canada has not been reported. In this study, we tested for T. gondii presence in clams (Mya truncata) that were harvested in Iqaluit, Nunavut over a 1-week period in September 2016. Of 390 clams, eight (2.1%) were confirmed to contain T. gondii DNA (≥99.7% identity), as determined using polymerase chain reaction (PCR) and sequence confirmation. Additionally, three clams (0.8%) were confirmed to contain Neospora caninum-like DNA (≥99.2% identity). While N. caninum is not known to be a zoonotic pathogen, its presence in shellfish indicates contamination of the nearshore with canid faeces, and the potential for marine mammal exposure through marine food webs. Notably, the PCR assay employed in this study does not discriminate between viable and non-viable parasites. These findings suggest a possible route for parasite exposure through shellfish in Iqaluit, Nunavut. Future research employing viability testing will further inform public health messaging on the infectious potential of T. gondii in shellfish.


Asunto(s)
Bivalvos/parasitología , Parasitología de Alimentos , Toxoplasma/aislamiento & purificación , Toxoplasmosis/transmisión , Animales , Secuencia de Bases , Humanos , Nunavut/epidemiología , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Toxoplasma/genética , Zoonosis
18.
Food Waterborne Parasitol ; 21: e00096, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33299933

RESUMEN

Food and waterborne protozoan pathogens can cause serious disease in people. Three common species Cryptosporidium parvum, Giardia enterica and Toxoplasma gondii can contaminate diverse shellfish species, including commercial oysters. Current methods of protozoan detection in shellfish are not standardized, and few are able to simultaneously identify multiple species. Here, we present a novel metabarcoding assay targeting the 18S rRNA gene followed by next generation sequencing (NGS) for simultaneous detection of Cryptosporidium spp., Giardia spp. and T. gondii spiked into oyster samples. We further developed a bioinformatic pipeline to process and analyze 18S rRNA data for protozoa classification. The ability of the NGS assay to detect protozoa was later compared with conventional PCR. Results demonstrated that background amplification of oyster and other eukaryotic DNA competed with that of protozoa for obtained sequence reads. Sequences of target protozoans were obtained across all spiking levels; however, low numbers of target sequences in negative controls imply that a threshold for true positives must be defined for assay interpretation. While this study focused on three target parasites, the ability of this approach to detect numerous known and potentially unknown protozoan pathogens make it a promising screening tool for monitoring protozoan contamination in food and water.

19.
Zoonoses Public Health ; 67(4): 352-361, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32065491

RESUMEN

High prevalences of Cryptosporidium and Giardia were recently found in enteric illness patients in the Qikiqtaaluk region of Nunavut, Canada, with a foodborne, waterborne or animal source of parasites suspected. Clams (Mya truncata) are a commonly consumed, culturally important and nutritious country food in Iqaluit; however, shellfish may concentrate protozoan pathogens from contaminated waters. The goal of this work was to investigate clams as a potential source of Cryptosporidium and Giardia infections in residents in Iqaluit, Nunavut. The objectives were to estimate the prevalence and genetically characterize Cryptosporidium and Giardia in locally harvested clams. Clams (n = 404) were collected from Iqaluit harvesters in September 2016. Haemolymph (n = 328) and digestive gland (n = 390) samples were screened for Cryptosporidium and Giardia via PCR, and amplified products were further processed for sequence analyses for definitive confirmation. Giardia DNA was found in haemolymph from 2 clams, while Cryptosporidium was not detected. The two Giardia sequences were identified as zoonotic Giardia enterica assemblage B. The overall prevalence of Giardia in clams near Iqaluit was low (0.6%) compared with other studies in southern Canada and elsewhere. The presence of Giardia DNA in clams suggests human or animal faecal contamination of coastal habitat around Iqaluit in shellfish harvesting waters. Results from this study are intended to inform public health practice and planning in Inuit Nunangat.


Asunto(s)
Bivalvos/parasitología , Cryptosporidium/aislamiento & purificación , Giardia/aislamiento & purificación , Animales , Nunavut , Agua/parasitología
20.
Zoonoses Public Health ; 67(1): 70-78, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31677251

RESUMEN

BACKGROUND: Toxoplasma gondii is a zoonotic parasite that can have severe implications for human health. Acutely infected cats shed environmentally resistant T. gondii oocysts in their faeces that contaminate soil, and soil can serve as a reservoir of infection for humans. Free-roaming domestic cats are thought to play an important role in environmental contamination with T. gondii, but few studies have directly measured the direct contribution of free-roaming cats to T. gondii in soil. METHODS: Our goals were to determine whether T. gondii soil contamination occurs in public areas with free-roaming cat colonies in central California and examine spatial and temporal variation in soil contamination. We initially performed spiking experiments to compare the limit of T. gondii detection in soil using three conventional nested PCR assays and one real-time quantitative PCR. The nested PCR targeting the internal transcribed spacer (ITS-1) of the small subunit ribosomal RNA was the most sensitive assay, with a limit of detection between 20 and 200 oocysts per gram of soil. We applied the ITS1 PCR assay on soil from sites in city and state parks, public playgrounds and community gardens in central California, USA. Samples were collected during spring, summer and fall and in sites located along the coast and inland. RESULTS: We detected and sequence-confirmed T. gondii in 5.6% of all of our soil sub-samples, but with large seasonal and spatial variation in soil contamination: we only detected T. gondii during fall and only in coastal sites (44.3% soil prevalence), despite similar sampling intensity across space and time. CONCLUSIONS: Our results suggest that free-roaming cat colonies are an important source of T. gondii in spaces where people recreate and grow food and that soil contamination is highly seasonal and spatially variable. Management of free-roaming cats could prevent T. gondii infections by reducing environmental contamination with this zoonotic pathogen.


Asunto(s)
Enfermedades de los Gatos/parasitología , Estaciones del Año , Suelo/parasitología , Toxoplasma/aislamiento & purificación , Toxoplasmosis Animal/parasitología , Animales , California , Enfermedades de los Gatos/epidemiología , Gatos , Heces/parasitología , Humanos , Oocistos , Parques Recreativos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Instalaciones Deportivas y Recreativas , Toxoplasmosis Animal/epidemiología , Zoonosis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...