Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(47): 56366-56374, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784712

RESUMEN

Ti2Nb2O9 with a tunnel-type structure is considered as a perspective negative electrode material for Li-ion batteries (LIBs) with theoretical capacity of 252 mAh g-1 corresponding to one-electron reduction/oxidation of Ti and Nb, but only ≈160 mAh g-1 has been observed practically. In this work, highly reversible capacity of 200 mAh g-1 with the average (de)lithiation potential of 1.5 V vs Li/Li+ is achieved for Ti2Nb2O9 with pseudo-2D layered morphology obtained via thermal decomposition of the NH4TiNbO5 intermediate prepared by K+→ H+→ NH4+ cation exchange from KTiNbO5. Using operando synchrotron powder X-ray diffraction (SXPD), single-phase (de)lithiation mechanism with 4.8% unit cell volume change is observed. Operando X-ray absorption near-edge structure (XANES) experiment revealed simultaneous Ti4+/Ti3+ and Nb5+/Nb4+ reduction/oxidation within the whole voltage range. Li+ migration barriers for Ti2Nb2O9 along [010] direction derived from density functional theory (DFT) calculations are within the 0.15-0.4 eV range depending on the Li content that is reflected in excellent C-rate capacity retention. Ti2Nb2O9 synthesized via the ion-exchange route appears as a strong contender to widely commercialized Ti-based negative electrode material Li4Ti5O12 in the next generation of high-performance LIBs.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435502

RESUMEN

Electrochemical characterization of the novel sodium iron titanate Na0.9Fe0.45Ti1.55O4 was performed upon cycling in the Li-ion half-cell. The material exhibited stable cycling in the voltage range 2-4.5 V, and the number of alkali ions extracted per formula unit was approximately half of the Na stoichiometry value. Using laboratory X-ray absorption spectrometry, we measured operando Fe K-edge X-ray absorption spectra in the first 10 charge-discharge cycles and quantified the portion of charge associated with the transition metal redox reaction. Although 3d metals are commonly accepted redox-active centers in the intercalation process, we found that in all cycles the amount of oxidized and reduced Fe ions was almost 20% less than the total number of transferred electrons. Using density functional theory (DFT) simulations, we show that part of the reversible capacity is related to the redox reaction on oxygen ions.

3.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32985193

RESUMEN

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Imidazoles/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Daño del ADN/efectos de los fármacos , Humanos , Ligandos , Células MCF-7 , Modelos Biológicos , Conformación Molecular , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares/efectos de los fármacos , Relación Estructura-Actividad , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo
4.
Nat Commun ; 11(1): 2131, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358505

RESUMEN

OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu-Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA