Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 15(18): 1669-1685, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37732405

RESUMEN

Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 µM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 µM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 µM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias , Amidas/farmacología , Cumarinas/farmacología , Epigénesis Genética , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Proliferación Celular , Ácidos Hidroxámicos/farmacología , Diseño de Fármacos , Antineoplásicos/farmacología , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico
2.
Mini Rev Med Chem ; 23(17): 1733-1759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36722483

RESUMEN

Cancer is one of the severe diseases in which abnormal cells divide and proliferate in an uncontrolled manner without any regulation. Globally cancer is among the leading causes of death; according to a recent report of by the WHO, around 10 million people died in 2018 due to cancer. It has also been reported that by 2040, approximately 30 million new cases will be reported every year. The increase in the incidences of cancer is taking a toll on the health care system worldwide. Considerable scientific literature is available on anticancer agents but newer therapeutic strategies are still required in this field to address novel approaches to drug design and discovery to counter this problem. Imidazothiazole represents a privileged scaffold in medicinal chemistry and provides the medicinal chemist the possibility to modulate the physiochemical properties of the lead compound. In recent times, imidazothiazole scaffold is broadly explored for its anticancer activity, which acts through various mechanisms such as EGFR, B-RAF, DHFR kinase inhibition and tubulin polymerization inhibition and other molecular mechanisms of action. Due to their feasible synthetic accessibility and promising pharmacological profile, it has attracted various medicinal chemists to explore and develop imidazothiazole derivatives as potent and safe anticancer agents. In the present article, we have reviewed various potent imidazothiazole scaffold-based derivatives reported as anticancer agents, their synthetic strategies, Structure Activity Relationship (SAR), mechanism of action, and molecular docking along with their future perspective. This review will be very useful for medicinal chemists for drug design and development of imidazothiazole-based potent antiproliferative agents.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Diseño de Fármacos , Estructura Molecular
3.
Curr Top Med Chem ; 23(14): 1319-1339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36703601

RESUMEN

Coronavirus disease (COVID-19) was reported to be transmitted from bats to humans and, became a pandemic in 2020. COVID-19 is responsible for millions of deaths worldwide and still, the numbers are increasing. Further, despite the availability of vaccines, mutation in the virus continuously poses a threat of re-emergence of the more lethal form of the virus. So far, the repurposing of drugs has been exercised heavily for the identification of therapeutic agents against COVID-19, which led FDA to approve many drugs for the same e.g., remdesivir, favipiravir, ribavirin, etc. The anti-COVID drugs explored via other approaches include nirmatrelvir (used in combination with ritonavir as Paxlovid), tixagevimab and cilgavimab (both used in combination with each other) and others. However, these approved drugs failed to achieve a significant clinical outcome. Globally, natural bioactive have also been explored for anti-COVID-19 effects, based on their traditional medicinal values. Although the clinical findings suggest that FDA-approved drugs and natural bioactives can help reducing the overall mortality rate but the significant clinical outcome was not achieved. Therefore, the focus has been shifted towards new drug development. In line with that, a lot of work has been done and still going on to explore heterocyclic compounds as potent anti- COVID-19 drugs. Several heterocyclic scaffolds have been previously reported with potent antiinflammatory, anticancer, anti-viral, antimicrobial and anti-tubercular effects. Few of them are under consideration for clinical trials whereas others are under preclinical investigation. Hence, this review discusses the evidence of rationally designed and tested heterocyclic compounds acting on different targets against COVID-19. The present article will help the researches and will serve as a pivotal resource in the design and development of novel anti-COVID-19 drugs.


Asunto(s)
COVID-19 , Compuestos Heterocíclicos , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico
4.
Bioorg Chem ; 126: 105885, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636128

RESUMEN

A series of novel cyanopyrimidine-hydrazone hybrids were synthesized and characterized with various spectroscopic techniques. The synthesized compounds were tested at NCI, USA, on a 60-cell line panel and most of the compounds showed remarkable cytotoxic activity against different cancer cell lines. Compound 5a was found to be the most potent compound of the series and it was further selected for five dose assays wherein it exhibited GI50 value of 0.414 µM and 0.417 µM against HOP-62 and OVCAR-4 cell lines respectively. The in-silico mechanistic studies indicated that these compounds are acting through inhibition of lysine specific demethylase 1 (LSD1) as evident from in to vitro LSD1 inhibition activity of compounds. Among various synthesized derivatives, compound 5a was found to have IC50-value of 0.956 µM. In addition, absorption, distribution, metabolism, excretion and toxicity profile (ADMET) was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes which revealed that synthesized compounds showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). The results indicated that compound 5a could be a promising lead compound for further development as a therapeutic agent for anticancer activity.


Asunto(s)
Antineoplásicos , Hidrazonas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Demetilasas , Humanos , Hidrazonas/química , Lisina/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
5.
Mini Rev Med Chem ; 22(12): 1648-1706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34939540

RESUMEN

'Epigenetic' regulation of genes via post-translational modulation of proteins is a wellexplored approach for disease therapies, particularly cancer chemotherapeutics. Histone deacetylases (HDACs) are one of the important epigenetic targets and are mainly responsible for balancing the acetylation/deacetylation of lysine amino acids on histone/nonhistone proteins along with histone acetyltransferase (HAT). HDAC inhibitors (HDACIs) have become important biologically active compounds for the treatment of cancers due to cell cycle arrest, differentiation, and apoptosis in tumor cells, thus leading to anticancer activity. Out of the four classes of HDAC, i.e., Class I, II, III, and IV, HDACIs act on Class IV (Zinc dependent HDAC), and various FDA-approved drugs belong to this category. The required canonical pharmacophore model (zinc-binding group, surface recognition cap, and appropriate linker) supported by HDACIs, various heterocyclic moieties containing compounds exhibiting HDAC inhibitory activity, and structure-activity relationship of different synthetic derivatives reported during the last twelve years have been summarized in this review.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Zinc
6.
Arch Pharm (Weinheim) ; 354(1): e2000116, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33015829

RESUMEN

In continuation of our previous work on cancer and inflammation, 15 novel pyrazole-pyrazoline hybrids (WSPP1-15) were synthesized and fully characterized. The formation of the pyrazoline ring was confirmed by the appearance of three doublets of doublets in 1 H nuclear magnetic resonance spectra exhibiting an AMX pattern for three protons (HA , HM , and HX ) of the pyrazoline ring. All the synthesized compounds were screened for their in vitro anticancer activity against five cell lines, that is, MCF-7, A549, SiHa, COLO205, and HepG2 cells, using the MTT growth inhibition assay. 5-Fluorouracil was taken as the positive control in the study. It was observed that, among them, WSPP11 was found to be active against A549, SiHa, COLO205, and HepG2 cells, with IC50 values of 4.94, 4.54, 4.86, and 2.09 µM. All the derivatives were also evaluated for their cytotoxicity against HaCaT cells. WSPP11 was also found to be nontoxic against normal cells (cell line HaCaT), with an IC50 value of more than 50 µM. The derivatives were also evaluated for their in vitro anti-inflammatory activity by the protein (egg albumin) denaturation assay and the red blood cell membrane stabilizing assay, using diclofenac sodium and celecoxib as standard. Compounds that showed significant anticancer and anti-inflammatory activities were further studied for COX-2 inhibition. The manifestation of a higher COX-2 selectivity index of WSPP11 as compared with other derivatives and an in vitro anticancer activity against four cell lines further established that compounds that were more selective toward COX-2 also exhibited a better spectrum of activity against various cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Neoplasias/tratamiento farmacológico , Pirazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Diseño de Fármacos , Fluorouracilo/farmacología , Humanos , Concentración 50 Inhibidora , Neoplasias/patología , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
7.
Arch Pharm (Weinheim) ; 353(5): e1900333, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32115728

RESUMEN

In continuation of our previous work on anticancer and anti-inflammatory agents, a series of 22 novel methylene-bearing sulfur-containing cyanopyrimidine derivatives was synthesized by Biginelli condensation reaction, which was followed by nucleophilic substitution of the chloro group with secondary or tertiary amines. Structural confirmation of these derivatives was attained through different spectral techniques. Then, anticancer evaluation of these compounds was done at the National Cancer Institute. Compounds 4g, 4j, 4k, and 4v demonstrated appreciable results against different cell lines. Among the synthesized compounds, 4g (NSC: 795475) exhibited a growth inhibition (GI) of 81.34% against the NCI-H460 lung cancer cell line, 72.64% against the ACHN renal cancer cell line, and 112.17% against the OVCAR-4 ovarian cancer cell line. Compound 4j (NSC: 795746) was active against U-251 CNS cancer, OVCAR-4 ovarian cancer, and 786-0 and ACHN renal cancer cell lines, with GI of 78.84%, 150.38%, 75.64%, and 86.45%, respectively. The literature supporting the association between cancer and underlying inflammation prompted us to evaluate the four compounds, 4g, 4j, 4k, and 4v, with appreciable anticancer activity for their in vitro anti-inflammatory activity. Cyclooxygenase (COX)-2 inhibition studies were also performed to study the molecular target. To validate the target study, molecular docking studies in the ligand-binding domain of COX-2 (PDB ID: 1CX2) were also performed. Compounds 4g, 4j, and 4k did not show cytotoxicity on RAW 264.7 cells up to 10 µM concentration; however, compound 4v showed cytotoxic effects at 10 µM concentration.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Metano/farmacología , Pirimidinas/farmacología , Azufre/farmacología , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Metano/química , Ratones , Modelos Moleculares , Estructura Molecular , Pirimidinas/química , Células RAW 264.7 , Relación Estructura-Actividad , Azufre/química
8.
Arch Pharm (Weinheim) ; 353(2): e1900287, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31867798

RESUMEN

Inhibition of dihydrofolate reductase from Mycobacterium tuberculosis-dihydrofolate reductase (Mtb-DHFR) has emerged as a promising approach for the treatment of tuberculosis. To identify novel Mtb-DHFR inhibitors, structure-based virtual screening (SBVS) of the Molecular Diversity Preservation International (MolMall) database was performed using Glide against the Mtb-DHFR and h-DHFR enzymes. On the basis of SBVS, receptor fit, drug-like filters, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, 16 hits were selected and tested for their antitubercular activity against the H37 RV strain of M. tuberculosis. Five compounds showed promising activity with compounds 11436 and 15275 as the most potent hits with IC50 values of 0.65 and 12.51 µM, respectively, against the H37 RV strain of M. tuberculosis. The two compounds were further tested in the Mtb-DHFR and h-DHFR enzymatic assay for selectivity and were found to be three- to eight-fold selective towards Mtb-DHFR over h-DHFR with minimum inhibitory concentration values of 5.50, 73.89 µM and 42.00, 263.00 µM, respectively. In silico simulation studies also supported the stability of the protein-ligand complex formation. The present study demonstrates the successful utilization of in silico SBVS tools for the identification of novel and potential Mtb-DHFR inhibitors and compound 11436 ((2,4-dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone) as a potential lead for the development of novel Mtb-DHFR inhibitors.


Asunto(s)
Antituberculosos/farmacología , Antagonistas del Ácido Fólico/farmacología , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/química , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Relación Estructura-Actividad
9.
Expert Opin Ther Pat ; 29(9): 703-731, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31369715

RESUMEN

Introduction: Combretastatins represent a potent class of phenolic-stilbene natural products that function as colchicine binding site inhibitors of tubulin polymerization and have been advanced as promising anticancer lead compounds. Among them, combretastatin A-4 is the most potent lead molecule due to its broad spectrum cytotoxicity against a variety of tumors. However, low water solubility due to its high lipophilic nature and inter-conversion of olefinic double bond from more active cis to less active trans-conformation poses limitations to its clinical utility. However, different approaches including prodrugs, salt formations, structural modifications, prevention of inter-conversion of the olefinic bond and changes to the substitution pattern on the rings of combretastatin A-4 were investigated and successfully resulted in different combretastatin-based molecules that demonstrated varying levels of potency against different types of tumors during their in-vitro and in-vivo studies. Areas covered: This review covers the patents over a period of 2008-2018. Expert opinion: Molecular hybridization and prodrug designing imparted multi-targeted actions to combretastatin derivatives. Currently, various combretastatin derivatives are under clinical trials. These derivatives could be used to treat disorders other than cancer, due to their vascular disrupting action.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bibencilos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/química , Bibencilos/química , Diseño de Fármacos , Humanos , Patentes como Asunto , Solubilidad , Relación Estructura-Actividad , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
10.
Comput Biol Med ; 110: 175-185, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173941

RESUMEN

In the present study, a series of dibenzepinones, dibenzoxepines, and benzosuberones targeting p38α MAP kinase were subjected to pharmacophore modelling, 3D-QSAR and molecular docking studies. The IC50 values for these 67 compounds ranged between 0.003 and 6.80 µM. A five-point model (DDHHR.8) was generated using these compounds. This model was found to be statistically significant and was found to have high correlation (R2 = 0.98), cross-validation coefficient (Q2 = 0.95) and F (330) values at six component PLS factor. Tests were performed to ascertain the efficacy of the generated model. These tests included external validation, Tropsha's test for predictive ability, Y-randomisation test and domain of applicability (APD). In order to check the restrictivity of the model, enrichment studies were performed with inactive compounds by using decoy set molecules. To evaluate the effectiveness of the docking protocol, the co-crystallised ligand was extracted from the ligand-binding domain of the protein and was re-docked into the same position. Both the conformers were then superimposed, suggesting satisfactory docking parameters with an RMSD value of less than 1.0 Š(0.853 Å). A 10 ns molecular dynamics simulation confirmed the docking results of the 3UVP-ligand complex and the presumed active conformation. The outcome of the present study provides insight into the molecular features that promote bioactivity and can be exploited for the prediction of novel potent p38α MAP kinase inhibitors before carrying out their synthesis and anticancer evaluation.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Humanos , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/química , Relación Estructura-Actividad Cuantitativa
11.
Bioorg Chem ; 89: 102986, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146198

RESUMEN

In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ±â€¯1.68, 40.1 ±â€¯1.0 and 19.0 ±â€¯1.47 µg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ±â€¯2.72, 66.8 ±â€¯2.05 and 73.1 ±â€¯1.69 µg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.


Asunto(s)
Antimaláricos/farmacología , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Oxadiazoles/química , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/metabolismo , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Concentración 50 Inhibidora , Leishmania/fisiología , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Simulación del Acoplamiento Molecular , Oxadiazoles/síntesis química , Oxadiazoles/farmacología , Estructura Terciaria de Proteína , Pirazoles/química , Células RAW 264.7 , Ratas , Ratas Wistar , Relación Estructura-Actividad
12.
Bioorg Chem ; 87: 667-678, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30953886

RESUMEN

Meagre and suboptimal therapeutic response along with the side effect profile associated with the existing anticancer therapy have necessitated the development of new therapeutic modalities to curb this disease. Bearing in mind the current scenario, a series of 1,2,3-triazole linked 3-(1,3-diphenyl-1H-pyrazol-4-yl)acrylates was synthesized following a multi-step reaction scheme. Initial screening for anticancer potential was done by in vitro sulforhodamine B assay against four human cancer cell lines- MCF-7 (breast), A549 (Lung) and HCT-116 and HT-29 (Colon). On evaluation, several compounds showed promising growth inhibition against all the cell lines, particularly compounds 6e, 6f and 6n. Among them, compound 6f displayed IC50 values of 1.962, 3.597, 1.764 and 4.496 µM against A549, HCT-116, MCF-7 and HT-29 cell lines respectively. Furthermore, the apoptosis inducing potential of the compounds was determined by Hoechst staining and DNA fragmentation assay. Colony formation inhibition assay was also carried out to determine the long term cytotoxic potential of the molecules. Moreover, compounds 6e, 6f and 6n were also evaluated for anti-inflammatory activity by protein albumin denaturation assay and red blood cell membrane stabilizing assay.


Asunto(s)
Acrilatos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Triazoles/farmacología , Acrilatos/química , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Eritrocitos/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Ovalbúmina/metabolismo , Desnaturalización Proteica/efectos de los fármacos , Albúmina Sérica Bovina/metabolismo , Relación Estructura-Actividad , Triazoles/química , Células Tumorales Cultivadas
13.
Eur J Med Chem ; 167: 324-356, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30776694

RESUMEN

Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.


Asunto(s)
Morfolinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Humanos , Morfolinas/química
14.
Mini Rev Med Chem ; 19(6): 477-509, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30324877

RESUMEN

1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.


Asunto(s)
Descubrimiento de Drogas , Oxadiazoles/química , Oxadiazoles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Antihipertensivos/química , Antihipertensivos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos
15.
Eur J Med Chem ; 164: 121-170, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594028

RESUMEN

The quinoline core possesses a vast number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antitubercular and antileishmanial. The conventional classical synthetic methods require the use of expensive and harsh conditions such as high temperature. Currently the scientific communities are searching new methodology to eliminate the use of chemicals, solvents and catalysts, which are hazardous to human health as well as to environment. This review provides a concise overview of new dimensions of green chemistry approaches in designing quinoline scaffold that would encourage the researchers towards green chemistry as well as future application of these greener, non-toxic, environment friendly methods in designing quinoline scaffold.


Asunto(s)
Tecnología Química Verde/métodos , Quinolinas/síntesis química , Diseño de Fármacos , Tecnología Química Verde/tendencias , Humanos , Quinolinas/uso terapéutico
16.
Eur J Med Chem ; 157: 527-561, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30119011

RESUMEN

Pyrrole is a heterocyclic ring template with multiple pharmacophores that provides a way for the generation of library of enormous lead molecules. Owing to its vast pharmacological profile, pyrrole and its analogues have drawn much attention of the researchers/chemists round the globe to be explored exhaustively for the benefit of mankind. This review focusses on recent advancements; pertaining to pyrrole scaffold, discussing various aspects of structure activity relationship and its bioactivities.


Asunto(s)
Pirroles/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiulcerosos/química , Antiulcerosos/farmacología , Antidepresivos/química , Antidepresivos/farmacología , Antihipertensivos/química , Antihipertensivos/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Humanos , Estructura Molecular , Pirroles/química , Relación Estructura-Actividad
17.
J Environ Pathol Toxicol Oncol ; 37(2): 139-150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30055549

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease followed only by Alzheimer's disease and affects millions of people worldwide. Despite the plethora of preclinical and clinical studies, there is currently a paucity of therapeutic agents for PD that can promote neuroprotection. In addition, the therapeutic agents currently available only help with improvement of PD symptoms. Therefore, it is imperative to find new therapeutic avenues for PD patients to minimize the economic and social burden on the concerned families. Rotenone is a frequently used neurotoxin in developing a PD model to aid in understanding the mechanisms of neuronal death. In addition, several studies have investigated the effects of melatonin, a neurohormone that is neuroprotective in various neurological diseases due to its anti-apoptotic, anti-inflammatory, and anti-oxidative properties. Our study investigated the role of melatonin-induced tyrosine hydroxylase (TH) and sensory motor function in a rotenone rat model to determine whether melatonin had any positive effects. Our results revealed that melatonin improves motor function by upregulation of TH in striatum of the brain. In addition, melatonin inhibits the striatal degeneration as shown by histopathological analysis. Therefore, results from the current study provide evidence for melatonin as a promising candidate for effective future therapeutic strategies for PD.


Asunto(s)
Melatonina/farmacología , Fuerza Muscular/efectos de los fármacos , Neurotransmisores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Equilibrio Postural/efectos de los fármacos , Trastornos Psicomotores/tratamiento farmacológico , Tirosina 3-Monooxigenasa/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Neurotoxinas/toxicidad , Enfermedad de Parkinson/etiología , Ratas , Ratas Wistar , Rotenona/toxicidad
18.
Arch Pharm (Weinheim) ; 351(3-4): e1700223, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29400412

RESUMEN

The design, synthesis, structure-activity relationship, and biological activity of 2,4-thiazolidinedione derivatives as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity are reported. Fifteen 2,4-thiazolidinedione derivatives clubbed with pyrazole moiety were docked into the ligand binding domain of PPAR-γ by the Glide XP module of Schrodinger. Eight derivatives (5a, 5b, 5d, 5f, 5i, 5l, 5n, 5o) having Glide XP scores > -8 as compared to the standard drug, rosiglitazone (Glide XP score = -9.165), showed almost similar interaction with the amino acids such as HIS 449, TYR 473, TYR 327, HIS 323, and SER 289 in the molecular docking studies. These eight derivatives were further screened for PPAR-γ transactivation and in vivo blood glucose lowering activity in the streptozotocin-induced diabetic rat model. Compounds 5o, 5n, 5a, 5i, and 5b showed 52.06, 51.30, 48.65, 43.13, and 40.36% PPAR-γ transactivation as compared to the reference drugs rosiglitazone and pioglitazone with 85.30 and 65.22% transactivation, respectively. The data analysis showed significant blood glucose lowering effects (hypoglycemia) of compounds 5o, 5n, and 5a (140.1 ± 4.36, 141.4 ± 6.15, and 150.7 ± 4.15, respectively), along with reference drugs pioglitazone (135.2 ± 4.91) and rosiglitazone (141.1 ± 5.88) as compared to the diabetic control. Furthermore, the most potent compound 5o also elevated the PPAR-γ gene expression by 2.35-fold as compared to rosiglitazone (1.27-fold) and pioglitazone (1.6-fold). It also significantly lowered the AST, ALT, and ALP levels and caused no damage to the liver.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , PPAR gamma/antagonistas & inhibidores , Pirazoles/farmacología , Tiazolidinedionas/farmacología , Células 3T3-L1 , Animales , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Ratones , Estructura Molecular , PPAR gamma/genética , PPAR gamma/metabolismo , Pirazoles/química , Ratas , Estreptozocina , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
19.
Bioorg Chem ; 77: 106-124, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29353728

RESUMEN

Depravity of malaria in terms of morbidity and mortality in human beings makes it a major health issue in tropical and subtropical areas of the globe. Drug counterfeiting and non-adherence to the treatment regimen have significantly contributed to development and spread of multidrug resistance that has highlighted the need for development of novel and more efficient antimalarial drugs. Complexity associated with cancer disease and prevalence of diversified cell populations vindicates highly specific treatment options for treatment of cancer. Resistance to these anticancer agents has posed a great hindrance in successful treatment of cancer. Pondering this ongoing situation, it was speculated to develop novel compounds targeting malaria and cancer. Moving on the same aisle, we synthesized pyrazole acrylic acid based oxadiazole and amide derivatives using multi-step reaction pathways (6a-x; 6a'-h'). Schizont maturation inhibition assay was employed to determine antimalarial potential. Compound 6v emerged as the most potent antimalarial agent targeting falcipain-2 enzyme. Anticancer activity was done using sulforhodamine B assay. Compounds 6b' and 6g' demonstrated promising results against all the tested cell lines. Further, Microscopic view clearly indicated formation of apoptotic bodies, chromatin condensation, shrinkage of cells and bleb formation. Validation of the results was achieved using molecular docking studies. From the obtained results, it was observed that cyclization (oxadiazole) favored antimalarial activity while non-cyclized compounds (amides) emerged as better anticancer agents.


Asunto(s)
Acrilatos/farmacología , Amidas/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Oxadiazoles/farmacología , Pirazoles/farmacología , Acrilatos/química , Amidas/síntesis química , Amidas/química , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Pirazoles/química , Relación Estructura-Actividad
20.
Toxicol Mech Methods ; 28(1): 45-54, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28715929

RESUMEN

Glucocorticoids are known to have vital effects on metabolism, behavior and immunity. Any sort of impairment in their synthesis may lead to the generation of numerous ill health effects. Different environmental toxicants, including bisphenols and their analogs pose deleterious effect on the biosynthesis of glucocorticoids, thereby leading to endocrine disruption. In order to assess the effect of these environmental toxicants on gluocorticoid biosynthetic pathway, an in silico study was performed. This involved molecular docking studies of 18 ligands with the selected participating enzymes of the pathway. These enzymes were CYP11A1, CYP11B2, CYP19A1, CYP17A1, 3α/20ß-HSD, 3ß/17ß-HSD and CYP21A2. Comparison of their binding affinity was made with the known inhibitors of these enzymes. In case of CYP11A1, Bisphenol M (BP M) had the lowest docking score (D score) of -8.699 kCal/mol, and was better than that of the standard, Metyrapone. Bisphenol PH (BP PH) was found to have significant affinity with CYP11B2. In case CYP19A1, results were found to be comparable with the standards, Exemestane and Letrozole. BP PH elicited better results than the standard Abiraterone acetate against CYP17A1. BP M had a D score of -7.759 against 3α/20ß-HSD, again better results than the standard, Trilostane. Upon molecular docking of BP PH against CYP21A2, it was seen that amongst all the analogs, it had maximum interactions along with the lowest D score. From all the above instances mentioned, it is quite evident that certain BPA analogs have more potential to modulate the enzymes involved in comparison to the known inhibitors.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Glucocorticoides/biosíntesis , Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Fenoles/toxicidad , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Sitios de Unión , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/metabolismo , Ligandos , Fenoles/química , Fenoles/metabolismo , Unión Proteica , Conformación Proteica , Medición de Riesgo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...