Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1250218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711895

RESUMEN

The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.


Asunto(s)
Receptor alfa de Estrógeno , Neoplasias , Humanos , Receptor alfa de Estrógeno/genética , Oncogenes , Cognición , Genómica , Coactivador 3 de Receptor Nuclear/genética
3.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511268

RESUMEN

Mutations in the gene ankyrin repeat domain containing 11 (ANKRD11/ANCO1) play a role in neurodegenerative disorders, and its loss of heterozygosity and low expression are seen in some cancers. Here, we show that low ANCO1 mRNA and protein expression levels are prognostic markers for poor clinical outcomes in breast cancer and that loss of nuclear ANCO1 protein expression predicts lower overall survival of patients with triple-negative breast cancer (TNBC). Knockdown of ANCO1 in early-stage TNBC cells led to aneuploidy, cellular senescence, and enhanced invasion in a 3D matrix. The presence of a subpopulation of ANCO1-depleted cells enabled invasion of the overall cell population in vitro and they converted more rapidly to invasive lesions in a xenograft mouse model. In ANCO1-depleted cells, ChIP-seq analysis showed a global increase in H3K27Ac signals that were enriched for AP-1, TEAD, STAT3, and NFκB motifs. ANCO1-regulated H3K27Ac peaks had a significantly higher overlap with known breast cancer enhancers compared to ANCO1-independent ones. H3K27Ac engagement was associated with transcriptional activation of genes in the PI3K-AKT, epithelial-mesenchymal transition (EMT), and senescence pathways. In conclusion, ANCO1 has hallmarks of a tumor suppressor whose loss of expression activates breast-cancer-specific enhancers and oncogenic pathways that can accelerate the early-stage progression of breast cancer.


Asunto(s)
Cromatina , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
4.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980794

RESUMEN

BACKGROUND: CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. METHODS: We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. RESULTS: Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-ß- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-ß-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. CONCLUSIONS: These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.

5.
J Vis Exp ; (181)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35435909

RESUMEN

Invasion and metastatic spread of cancer cells are the major cause of death from cancer. Assays developed early on to measure the invasive potential of cancer cell populations typically generate a single endpoint measurement that does not distinguish between cancer cell subpopulations with different invasive potential. Also, the tumor microenvironment consists of different resident stromal and immune cells that alter and participate in the invasive behavior of cancer cells. Invasion into tissues also plays a role in immune cell subpopulations fending off microorganisms or eliminating diseased cells from the parenchyma and endothelial cells during tissue remodeling and angiogenesis. Real-Time Cellular Analysis (RTCA) that utilizes impedance biosensors to monitor cell invasion was a major step forward beyond endpoint measurement of invasion: this provides continuous measurements over time and thus can reveal differences in invasion rates that are lost in the endpoint assay. Using current RTCA technology, we expanded dual-chamber arrays by adding a further chamber that can contain stromal and/or immune cells and allows measuring the rate of invasion under the influence of secreted factors from co-cultured stromal or immune cells over time. Beyond this, the unique design allows for detaching chambers at any time and isolating of the most invasive cancer cell, or other cell subpopulations that are present in heterogeneous mixes of tumor isolates tested. These most invasive cancer cells and other cell subpopulations drive malignant progression to metastatic disease, and their molecular characteristics are important for in-depth mechanistic studies, the development of diagnostic probes for their detection, and the assessment of vulnerabilities. Thus, the inclusion of small- or large-molecule drugs can be used to test the potential of therapies that target cancer and/or stromal cell subpopulations with the goal of inhibiting (e.g., cancer cells) or enhancing (e.g., immune cells) invasive behavior.


Asunto(s)
Células Endoteliales , Células del Estroma , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Invasividad Neoplásica/patología , Células del Estroma/metabolismo , Microambiente Tumoral
6.
Oncoimmunology ; 11(1): 2027136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127250

RESUMEN

Pancreatic cancer remains largely unresponsive to immune modulatory therapy attributable in part to an immunosuppressive, desmoplastic tumor microenvironment. Here, we analyze mechanisms of cancer cell-autonomous resistance to T cells. We used a 3D co-culture model of cancer cell spheroids from the KPC (LSL-KrasG12D/+ /LSL-Trp53R172H/+ /p48-Cre) pancreatic ductal adenocarcinoma (PDAC) model, to examine interactions with tumor-educated T cells isolated from draining lymph nodes of PDAC-bearing mice. Subpopulations of cancer cells resistant to these tumor-educated T cells were isolated from the in vitro co-culture and their properties compared with sensitive cancer cells. In co-culture with resistant cancer cell subpopulations, tumor-educated T cells showed reduced effector T cell functionality, reduced infiltration into tumor cell spheroids and decreased induction of apoptosis. A combination of comparative transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to dissect the role of differential gene expression and signaling pathways between sensitive and resistant cells. A decreased expression of the chemokine CXCL12 (SDF-1) was revealed as a common feature in the resistant cell subpopulations. Adding back CXCL12 reversed the resistant phenotype and was inhibited by the CXCR4 inhibitor AMD3100 (plerixafor). We conclude that reduced CXCL12 signaling contributes to PDAC subpopulation resistance to T cell-mediated attack.


Asunto(s)
Carcinoma Ductal Pancreático , Compuestos Heterocíclicos , Neoplasias Pancreáticas , Animales , Apoptosis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/farmacología , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Linfocitos T , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Cancer Res ; 81(16): 4230-4241, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34135000

RESUMEN

AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.


Asunto(s)
Coactivador 3 de Receptor Nuclear/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Sistemas CRISPR-Cas , Técnicas de Cultivo Tridimensional de Células , Línea Celular Tumoral , Dexametasona/química , Progresión de la Enfermedad , Impedancia Eléctrica , Elementos de Facilitación Genéticos , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Coactivador 3 de Receptor Nuclear/química , Fenotipo , Isoformas de Proteínas , Empalme del ARN , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Tiazolidinedionas/farmacología , Pez Cebra
8.
Methods Mol Biol ; 2294: 3-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742390

RESUMEN

Cancer cell vascular invasion and extravasation at metastatic sites are hallmarks of malignant progression of cancer and associated with poor disease outcome. Here we describe an in vivo approach to study the invasive ability of cancer cells into the vasculature and their hematogenous metastatic seeding in zebrafish (Danio rerio). In one approach, extravasation of fluorescently labeled cancer cells is monitored in zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter. After injection into the precardiac sinus of 2-day-old embryos, cancer cells can extravasate from the vasculature into tissues over the next few days. Extravasated cancer cells are identified and counted in live embryos via fluorescence microscopy. In a second approach, intravasation of cancer cells can be evaluated by changing their injection site to the yolk sac of zebrafish embryos. In addition to monitoring the impact of drivers of malignant progression, candidate inhibitors can be studied in this in vivo model system for their efficacy as well as their toxicity for the host.


Asunto(s)
Modelos Animales de Enfermedad , Invasividad Neoplásica/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Migración Transendotelial y Transepitelial , Células Tumorales Cultivadas , Pez Cebra
9.
EMBO Rep ; 21(1): e48741, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31788936

RESUMEN

Transcription factors critical for the transition of normal breast epithelium to ductal carcinoma in situ (DCIS) and invasive breast cancer are not clearly defined. Here, we report that the expression of a subset of YAP-activated and YAP-repressed genes in normal mammary and early-stage breast cancer cells is dependent on the nuclear co-activator AIB1. Gene expression, sequential ChIP, and ChIP-seq analyses show that AIB1 and YAP converge upon TEAD for transcriptional activation and repression. We find that AIB1-YAP repression of genes at the 1q21.3 locus is mediated by AIB1-dependent recruitment of ANCO1, a tumor suppressor whose expression is progressively lost during breast cancer progression. Reducing ANCO1 reverts AIB1-YAP-dependent repression, increases cell size, and enhances YAP-driven aberrant 3D growth. Loss of endogenous ANCO1 occurs during DCIS xenograft progression, a pattern associated with poor prognosis in human breast cancer. We conclude that increased expression of AIB1-YAP co-activated targets coupled with a loss of normal ANCO1 repression is critical to patterns of gene expression that mediate malignant progression of early-stage breast cancer.


Asunto(s)
Neoplasias de la Mama , Coactivador 3 de Receptor Nuclear/genética , Proteínas Represoras/genética , Mama , Neoplasias de la Mama/genética , Humanos , Coactivador 3 de Receptor Nuclear/metabolismo
10.
Mol Cancer Ther ; 18(12): 2220-2232, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31451564

RESUMEN

CDK4/6 inhibitors are used in the treatment of advanced estrogen receptor (ER)(+) breast cancer. Their efficacy in ER(-) and early-stage breast cancer is currently under investigation. Here, we show that palbociclib, a CDK4/6 inhibitor, can inhibit both progression of ductal carcinoma in situ (DCIS) and growth of invasive disease in both an ER(-) basal breast cancer model (MCFDCIS) and an ER(+) luminal model (MCF7 intraductal injection). In MCFDCIS cells, palbociclib repressed cell-cycle gene expression, inhibited proliferation, induced senescence, and normalized tumorspheres formed in Matrigel while the formation of acini by normal mammary epithelial cells (MCF10A) was not affected. Palbociclib treatment of mice with MCFDCIS tumors inhibited their malignant progression and reduced proliferation of invasive lesions. Transcriptomic analysis of the tumor and stromal cell compartments showed that cell cycle and senescence genes, and MUC16, an ovarian cancer biomarker gene, were repressed during treatment. Knockdown of MUC16 in MCFDCIS cells inhibited proliferation of invasive lesions but not progression of DCIS. After cessation of palbociclib treatment genes associated with differentiation, for example, P63, inflammation, IFNγ response, and antigen processing and presentation remained suppressed in the tumor and surrounding stroma. We conclude that palbociclib can prevent progression of DCIS and is antiproliferative in ER(-) invasive disease mediated in part via MUC16. Lasting effects of CDK4/6 inhibition after drug withdrawal on differentiation and the immune response could impact the approach to treatment of early-stage ER(-) breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/uso terapéutico , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/uso terapéutico , Animales , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Estadificación de Neoplasias
11.
J Vis Exp ; (117)2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27842376

RESUMEN

Cancer cell vascular invasion and extravasation is a hallmark of metastatic progression. Traditional in vitro models of cancer cell invasion of endothelia typically lack the fluid dynamics that invading cells are otherwise exposed to in vivo. However, in vivo systems such as mouse models, though more physiologically relevant, require longer experimental timescales and present unique challenges associated with monitoring and data analysis. Here we describe a zebrafish assay that seeks to bridge this technical gap by allowing for the rapid assessment of cancer cell vascular invasion and extravasation. The approach involves injecting fluorescent cancer cells into the precardiac sinus of transparent 2-day old zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter. Following injection, the cancer cells must survive in circulation and subsequently extravasate from vessels into tissues in the caudal region of the embryo. Extravasated cancer cells are efficiently identified and scored in live embryos via fluorescence imaging at a fixed timepoint. This technique can be modified to study intravasation and/or competition amongst a heterogeneous mixture of cancer cells by changing the injection site to the yolk sac. Together, these methods can evaluate a hallmark behavior of cancer cells and help uncover mechanisms indicative of malignant progression to the metastatic phenotype.


Asunto(s)
Invasividad Neoplásica , Pez Cebra , Animales , Bioensayo , Modelos Animales de Enfermedad , Embrión no Mamífero , Fluorescencia , Humanos , Neoplasias , Saco Vitelino
12.
Future Oncol ; 11(24): 3253-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26561730

RESUMEN

Metastatic spread of cancer cells from the primary tumor site to distant organs is the major cause of death in cancer patients. To disseminate, cancer cells detach from the primary tumor, enter the blood stream and extravasate at distant organ sites such as the liver, lung, bone or brain. While cancer cells are known to evade contact inhibition during growth in culture, we found that cell density is still sensed and can signal through the Hippo pathway effectors LATS1 and YAP. These effectors control cancer cell invasive behavior into stromal tissues, expression of cytokines that recruit inflammatory cells and progression toward metastatic spread. In this perspective, we discuss the drivers and the significance of pathways controlled by cell growth density.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Recuento de Células , Inhibición de Contacto , Citocinas/metabolismo , Vía de Señalización Hippo , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia
13.
Am J Pathol ; 179(5): 2220-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21945411

RESUMEN

Fibroblast growth factors (FGFs) participate in embryonic development, in maintenance of tissue homeostasis in the adult, and in various diseases. FGF-binding proteins (FGFBP) are secreted proteins that chaperone FGFs stored in the extracellular matrix to their receptor, and can thus modulate FGF signaling. FGFBP1 (alias BP1, FGF-BP1, or HBp17) expression is required for embryonic survival, can modulate FGF-dependent vascular permeability in embryos, and is an angiogenic switch in human cancers. To determine the function of BP1 in vivo, we generated tetracycline-regulated conditional BP1 transgenic mice. BP1-expressing adult mice are viable, fertile, and phenotypically indistinguishable from their littermates. Induction of BP1 expression increased mouse primary fibroblast motility in vitro, increased angiogenic sprouting into subcutaneous matrigel plugs in animals and accelerated the healing of excisional skin wounds. FGF-receptor kinase inhibitors blocked these effects. Healing skin wounds showed increased macrophage invasion as well as cell proliferation after BP1 expression. Also, BP1 expression increased angiogenesis during the healing of skin wounds as well as after ischemic injury to hindlimb skeletal muscles. We conclude that BP1 can enhance FGF effects that are required for the healing and repair of injured tissues in adult animals.


Asunto(s)
Proteínas Portadoras/metabolismo , Fibroblastos/metabolismo , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Animales , Proteínas Portadoras/genética , Movimiento Celular , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Miembro Posterior/irrigación sanguínea , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Isquemia/metabolismo , Isquemia/fisiopatología , Macrófagos/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Recombinantes , Piel/lesiones , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...