Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38660996

RESUMEN

SNPs could either cause a disorder or directly alter the efficacy of a particular treatment and act as biological markers. The SNP rs7587633 C/T present in the intronic region of the ATG16L1 gene has been studied for its role in psoriasis vulgaris and Palmoplantar pustulosis. To genotype rs7587633 C/T using PCR-RFLP no restriction site is present for any of the restriction enzymes at the SNP position. To develop an artificial-RFLP method for genotyping rs7587633 C/T, the forward primer was designed in such a way that it resulted in the creation of an EcoRI restriction site in the amplified product which could further be digested with EcoRI to find the genotype of the individual. The newly developed A-RFLP method was applied to genotype the SNP rs7587633 C/T in DNA samples of 100 healthy control individuals. The allelic and genotypic frequencies of the SNPs were 0.80(C), 0.20(T) and 65%(CC), 31%(CT) and 4%(TT), respectively. In conclusion, we developed an A-RFLP method to genotype the SNP rs7587633 C/T which is not present in any of the natural restriction sites and this method could be applied to genotype this SNP in various populations/diseases to find its role.

2.
ACS Omega ; 9(11): 12403-12425, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524428

RESUMEN

Graphene's two-dimensional structural arrangement has sparked a revolutionary transformation in the domain of conductive transparent devices, presenting a unique opportunity in the renewable energy sector. This comprehensive Review critically evaluates the most recent advances in graphene production and its employment in solar cells, focusing on dye-sensitized, organic, and perovskite devices for bulk heterojunction (BHJ) designs. This comprehensive investigation discovered the following captivating results: graphene integration resulted in a notable 20.3% improvement in energy conversion rates in graphene-perovskite photovoltaic cells. In comparison, BHJ cells saw a laudable 10% boost. Notably, graphene's 2D internal architecture emerges as a protector for photovoltaic devices, guaranteeing long-term stability against various environmental challenges. It acts as a transportation facilitator and charge extractor to the electrodes in photovoltaic cells. Additionally, this Review investigates current research highlighting the role of graphene derivatives and their products in solar PV systems, illuminating the way forward. The study elaborates on the complexities, challenges, and promising prospects underlying the use of graphene, revealing its reflective implications for the future of solar photovoltaic applications.

3.
Acute Crit Care ; 39(1): 117-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38476064

RESUMEN

BACKGROUND: Point of care ultrasound (POCUS) is being explored for dynamic measurements like inferior vena cava collapsibility index (IVC-CI) and left ventricular outflow tract velocity time integral (LVOT-VTI) to guide anesthesiologists in predicting fluid responsiveness in the preoperative period and in treating post-induction hypotension (PIH) with varying accuracy. METHODS: In this prospective, observational study on included 100 adult patients undergoing elective surgery under general anesthesia, the LVOT-VTI and IVC-CI measurements were performed in the preoperative room 15 minutes prior to surgery, and PIH was measured for 20 minutes in the post-induction period. RESULTS: The incidence of PIH was 24%. The area under the curve, sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the two techniques at 95% confidence interval was 0.613, 30.4%, 93.3%, 58.3%, 81.4%, 73.6% for IVC-CI and 0.853, 83.3%, 80.3%, 57.1%, 93.8%, 77.4% for LVOT-VTI, respectively. In multivariate analysis, the cutoff value for IVC-CI was >51.5 and for LVOT-VTI it was ≤17.45 for predicting PIH with odd ratio [OR] of 8.491 (P=0.025) for IVCCI and OR of 17.427 (P<0.001) for LVOT. LVOT-VTI assessment was possible in all the patients, while 10% of patients were having poor window for IVC measurements. CONCLUSIONS: We recommend the use of POCUS using LVOT-VTI or IVC-CI to predict PIH, to decrease the morbidity of patients undergoing surgery. Out of these, we recommend LVOT-VTI measurements as it has showed a better diagnostic accuracy (77.4%) with no failure rate.

4.
Mol Biol Rep ; 51(1): 384, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438793

RESUMEN

BACKGROUND: Single Nucleotide Polymorphisms (SNPs) in candidate autophagy gene BECN1 could influence its functions thereby autophagy process. BECN1 noncoding SNPs were found to be significantly associated with neurodegenerative disease and type 2 diabetes mellitus. This study aimed to develop a simultaneous genotyping technique for two BECN1 SNPs (rs10512488 and rs11552192). METHODS: A mutagenic primer-based approach was used to introduce a NdeI restriction site to genotype rs10512488 by Artificial-Restriction Fragment Length Polymorphism (A-RFLP) along with rs11552192 by Polymerase Chain Reaction (PCR)-RFLP. Multiplexing PCR and restriction digestion reactions were set up for simultaneous genotyping of both SNPs in 100 healthy individuals. Genotypic and allele frequencies were manually calculated, and the Hardy-Weinberg Equilibrium was assessed using the chi-square test. RESULTS: We successfully developed PCR and RFLP conditions for the amplification and restriction digestion of both SNPs within the same tube for genotyping. The results of genotyping by newly developed multiplexing PCR-RFLP technique were concordant with the genotypes obtained by Sanger sequencing of samples. Allelic frequencies of rs10512488 obtained were 0.15 (A) and 0.85 (G), whereas allelic frequencies of rs11552192 were 0.16 (T) and 0.84 (A). CONCLUSION: The newly developed technique is rapid, cost-effective and time-saving for large-scale applications compared to sequencing methods and would play an important role in low-income settings. For the first time, allelic frequencies of rs10512488 and rs11552192 were reported among the North Indian population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Humanos , Polimorfismo de Longitud del Fragmento de Restricción , Mutágenos , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena de la Polimerasa Multiplex , Genotipo , Beclina-1
5.
Heliyon ; 10(5): e26724, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434288

RESUMEN

The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37518952

RESUMEN

Protein unfolding and aggregation are often correlated with numerous diseases such as Alzheimer's, Parkinson's, Huntington's, and other debilitating neurological disorders. Such adverse events consist of a plethora of competing mechanisms, particularly interactions that control the stability and cooperativity of the process. However, it remains challenging to probe the molecular mechanism of protein dynamics such as aggregation, and monitor them in real-time under physiological conditions. Recently, Raman spectroscopy and its plasmon-enhanced counterparts, such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have emerged as sensitive analytical tools that have the potential to perform molecular studies of functional groups and are showing significant promise in probing events related to protein aggregation. We summarize the fundamental working principles of Raman, SERS, and TERS as nondestructive, easy-to-perform, and fast tools for probing protein dynamics and aggregation. Finally, we highlight the utility of these techniques for the analysis of vibrational spectra of aggregation of proteins from various sources such as tissues, pathogens, food, biopharmaceuticals, and lastly, biological fouling to retrieve precise chemical information, which can be potentially translated to practical applications and point-of-care (PoC) devices. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Asunto(s)
Nanotecnología , Espectrometría Raman , Espectrometría Raman/métodos , Nanotecnología/métodos
7.
J Asthma ; : 1-7, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009708

RESUMEN

Objective: Genetic background and environmental stimuli play an important role in asthma, which is an individual's hyper-responsiveness to these stimuli leading to airway inflammation. Autophagy Related Gene 5 (ATG5) plays a critical role in the autophagy pathway and has been shown to be involved in asthma. The genetic polymorphisms in the ATG5 have been reported to predispose individuals to asthma. The role of single nucleotide polymorphism rs17587319 (C/G) of ATG5 in asthma has not been studied so far.Materials and methods: In this study, we in silico analysed rs17587319 (C/G) using web-based tools Human Splice Finder (HSF) and RegulomeDB and further a case-control study was conducted that included 187 blood samples (94 asthmatic and 93 healthy controls).Results: In silico analysis suggested alteration of splicing signals by this intronic variant. The samples were genotyped by applying the PCR-RFLP method. The MAF obtained was 0.022 and 0.043 in healthy controls and asthmatic individuals, respectively. The statistical analysis revealed no association (allelic model, OR = 2.02, 95%CI = 0.59-6.83, p = 0.25; co-dominant model, OR = 2.06, 95%CI = 0.6-7.12, p = 0.24) of rs17587319 (C/G) with the susceptibility to asthma in the north Indian population.Conclusions: In conclusion, rs17587319 (C/G) of ATG5 does not predispose individuals to asthma in our part of the world. Further studies are needed including more number of samples to ascertain the role of this polymorphism in asthma.

8.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992133

RESUMEN

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Asunto(s)
Péptidos , Agua , Agua/química , Péptidos/química , Organofosfatos , Aminoácidos/química , Fosfatos/química , Ésteres
9.
Int J Biol Macromol ; 253(Pt 8): 127508, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865377

RESUMEN

Despite the high economic value of the monoterpene-rich essential oils from different genotypes of Cymbopogon, the knowledge about the genes and metabolic route(s) involved in the biosynthesis of aromatic monoterpenes in this genus is limited. In the present study, a comprehensive transcriptome analysis of four genotypes of Cymbopogon, displaying diverse quantitative and qualitative profiles of volatile monoterpenes in their essential oils has been carried out. The comparative analysis of the deduced protein sequences corresponding to the transcriptomes of the four genotypes revealed 4609 genotype-specific orthogroups, which might contribute in defining genotype-specific phenotypes. The transcriptome data mining led to the identification of unigenes involved in the isoprenogenesis. The homology searches, combined with the phylogenetic and expression analyses provided information about candidate genes concerning the biosynthesis of monoterpene aldehyde, monoterpene alcohol, and monoterpene esters. In addition, the present study suggests a potential role of geranial reductase like enzyme in the biosynthesis of monoterpene aldehyde in Cymbopogon spp. The detailed analysis of the candidate pathway genes suggested that multiple enzymatic routes might be involved in the biosynthesis of aromatic monoterpenes in the genus Cymbopogon. The present study provides deeper insights into the biosynthesis of monoterpenes, which will be useful for the genetic improvement of these aromatic grasses.


Asunto(s)
Cymbopogon , Aceites Volátiles , Monoterpenos/metabolismo , Transcriptoma , Cymbopogon/genética , Cymbopogon/metabolismo , Filogenia , Cetonas y Aldehídos Monoterpénicos , Aceites Volátiles/metabolismo , Genotipo
10.
J Mater Chem B ; 11(38): 9212-9222, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37650570

RESUMEN

The quest to enhance Raman spectroscopic signals through the rational design of plasmonic substrates has enabled the detection and characterization of pharmaceutically important molecules with low scattering cross-sections, such as amino acids and proteins, and is helping in making forays into the diverse field of biomedical sciences. This work presents a simple strategy for synthesizing silver nanoparticles-incorporated alumina nanofibers (Ag-AlNFs) utilizing controlled microwave synthesis for enhancing the surface-enhanced Raman chemical enhancement factor through photo-induced charge accumulation at the plasmonic-dielectric interface. The plasmonic-dielectric fibers serve as excellent charge carrier trappers, as evident from the ultrafast transient absorption spectroscopy studies. Apart from chemical enhancement, the increase in electronic surface charge also enables the protein disulfide bonds to capture these electrons and form a transient disulfide electron adduct radical, which converts to free thiol radical on dissociation. This allows protein molecules to bind to the nanoparticle's surface with the favorable silver thiol bond leading to greater surface affinity and larger SERS enhancement. The proposed Ag-AlNFs represent a cost-effective material that can be potentially used to probe biological systems in a label-free manner by photoactivating the SERS substrate for obtaining higher enhancement factors.

11.
Nanotheranostics ; 7(3): 216-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064614

RESUMEN

Although medical advances have increased our grasp of the amazing morphological, genetic, and phenotypic diversity of diseases, there are still significant technological barriers to understanding their complex and dynamic character. Specifically, the complexities of the biological systems throw a diverse set of challenges in developing efficient theranostic tools and methodologies that can probe and treat pathologies. Among several emerging theranostic techniques such as photodynamic therapy, photothermal therapy, magnetic resonance imaging, and computed tomography, Raman spectroscopy (RS) is emerging as a promising tool that is a label-free, cost-effective, and non-destructive technique. It can also provide real-time diagnostic information and can employ multimodal probes for detection and therapy. These attributes make it a perfect candidate for the analytical counterpart of the existing theranostic probes. The use of biocompatible nanomaterials for the fabrication of Raman probes provides rich structural information about the biological molecules, cells, and tissues and highly sensitive information down to single-molecule levels when integrated with advanced RS tools. This review discusses the fundamentals of Raman spectroscopic tools such as surface-enhanced Raman spectroscopy and Resonance Raman spectroscopy, their variants, and the associated theranostic applications. Besides the advantages, the current limitations, and future challenges of using RS in disease diagnosis and therapy have also been discussed.


Asunto(s)
Nanoestructuras , Fotoquimioterapia , Medicina de Precisión , Espectrometría Raman , Nanoestructuras/uso terapéutico , Nanotecnología
12.
Acute Crit Care ; 38(1): 134-141, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36935542

RESUMEN

BACKGROUND: Although gastric reserve volume (GRV) is a surrogate marker of gastrointestinal dysfunction and feeding intolerance, there is ambiguity in its estimation due to problems associated with its measurement. Introduction of point-of-care ultrasound as a tool for anesthetists kindled interest in its use for GRV estimation. METHODS: In this prospective observational study, we recruited 57 critically ill patients and analyzed 586 samples of GRV obtained by both ultrasonography (USG) and manual aspiration. RESULTS: The analysis showed that USG-guided GRV was significantly correlated (r=0.788, P<0.001) and in positive agreement with manual aspiration based on Bland-Altman plot, with a mean difference of 8.50±14.84 (95% confidence interval, 7.389-9.798). The upper and lower limits of agreement were 37.7 and -20.5, respectively, within the ±1.96 standard deviation (P<0.001). The respective sensitivity and positive predictive value, specificity and negative predictive value, and area under the curve of USG for feeding intolerance were 66.67%, 98.15%, and 0.82%, with 96.49% diagnostic accuracy. CONCLUSIONS: Ultrasonographic estimation of GRV was positively, significantly correlated and in agreement with the manual aspiration method and estimated feeding intolerance earlier. Routine use of gastric USG could avoid clinical situations where feeding status is unclear and there is high risk of aspiration and could become a standard practice of critical care.

13.
Bioresour Technol ; 377: 128949, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36963695

RESUMEN

Water monitoring and remediation require robust, low-cost, and reliable test systems that can couple with prompt treatment interventions. Organic matter (BOD, COD), toxicants, heavy metals, and other pollutants in water need to be regularly inspected. Microbial fuel cells (MFCs) have already gained popularity as BOD biomonitoring systems as these don't need an external transducer or power source. Moreover, these systems are cost-effective, compact, biodegradable, reusable, portable, and applicable for on-site measurements. MFCs truly stands out as online BOD measurement devices as they provide wide detection range (0-25 g/L), low response time (2-4 min) and longer stability in continuous operations (2-5 years) in a cost-effective approach. This review examines the benefits, kinds, performance metrics, and signal optimization of the current state-of-the-art of the BOD measurement, with detailed focus on MFC-based BOD biomonitoring systems. This review covers the important technological breakthroughs in practical applications with associated bottlenecks to develop reliable sensing systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Metales Pesados , Agua , Electrodos
14.
Environ Monit Assess ; 195(3): 389, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781554

RESUMEN

Water, an essential commodity available to mankind, is constantly under pollution threat. Industries are one of the major causative factors for its poor quality and therefore all organisms depending upon it, directly or indirectly are affected by various life-threatening problems. Thus, the treatment of discharge waste into the freshwater ecosystem is the dire need of the hour. The objective of the study is valorization of discarded snail shells for treatment of industrial wastewater. In the present study, industrial wastewater was treated using snail shell dust obtained from Bellamya bengalensis to assess change in water quality parameters. Various physico-chemical parameters like pH, total dissolved solids, electric conductivity, dissolved oxygen, biological oxygen demand, chemical oxygen demand, calcium, magnesium, total hardness, chlorides, bicarbonates, orthophosphates, sulfates, nitrates, and ammonia-N were assessed after its treatment with snail shell dust. Based on the present observation, it was concluded that all studied parameters except dissolved oxygen showed a remarkable decline in concentration after treatment with snail shell dust at the rate of 15 g per liter at the end of 4 days. Moreover, increased dissolved oxygen concentration also endorsed an enhancement in water quality. Statistical analysis through Pearson correlation and indices, viz., WQI (Water quality index) as well as Nemerow's Pollution index when applied to the present data, also supported an improvement in the water quality. The findings thus endorsed the utilization of snail shell dust as an eco-friendly technique and can be substituted as a sustainable method for the treatment of industrial wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Ecosistema , Análisis de la Demanda Biológica de Oxígeno , Oxígeno/análisis , Contaminantes Químicos del Agua/análisis
15.
Langmuir ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622301

RESUMEN

The emergence of nanoparticles in biomedical applications has made their interactions with proteins inevitable. Nanoparticles conjugated with proteins and peptide-based constructs form an integral part of nanotherapeutics and have recently shown promise in treating a myriad of diseases. The proper functioning of proteins is critical to achieve their biological functions. However, interface issues result in the denaturation of proteins, and the loss of orientation and steric hindrance can adversely affect the function of the conjugate. Furthermore, surface-induced denaturation also triggers protein aggregation, resulting in amyloid-like species. Understanding the mechanistic underpinnings of protein-nanoparticle interactions and controlling their interfacial characteristics are critical and challenging due to the complex nature of the conjugates. In this milieu, we demonstrate that ionic liquids can be suitable candidates for stabilizing protein-nanoparticle interactions by virtue of their excellent protein-preserving properties. We also probe the previously unexplored mechanism of ion-mediated stabilization of the protein molecules on the nanoparticle surface. The protein-nanoparticle conjugates consist of lysozyme and choline-based ionic liquids characterized by optical and electron microscopy techniques combined with surface-sensitive plasmon-enhanced Raman spectroscopy. Furthermore, atomistic molecular dynamics simulations of the conjugates delineate interfacial interactions of the protein molecules and the modulation by the ions, particularly the conformational changes and the dynamic correlation when the protein and specific ionic liquid molecules are adsorbed on the nanoparticle surface. The combined experimental and computational studies showed the synergistic behavior of the ions of the ionic liquids, specifically the orientation and coverage of the anions aided by the cations to control the surface interactions and hence the overall protein stability. These studies pave the way for using ionic liquids, particularly their biocompatible counterparts in nanoparticle-based complexes, as stabilizing agents for biomedical applications.

16.
Reprod Sci ; 30(3): 802-822, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35799018

RESUMEN

Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.


Asunto(s)
Hormona Liberadora de Gonadotropina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Síndrome del Ovario Poliquístico/metabolismo
17.
Ind Psychiatry J ; 32(2): 437-440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161461

RESUMEN

Suicide is the fourth leading cause of death. The annual global prevalence of suicidal ideas in adult population is 2%. Antidepressants are considered to be the first line of treatment for depression but the maximum response is noted only after 4-6 weeks. However, adding ketamine has shown very rapid response (within hours) and high remission rates in patients with depression. Here, we present case series of five depressive patients on treatment with antidepressants having suicidal thoughts. All participants received ketamine infusion 0.5 mg/kg over 45 min at a weekly interval as add-on treatment to ongoing treatment. The responses were assessed by using Montgomery Åsberg Depression Rating Scale psychometric tool. The finding indicates that ketamine infusion had a rapid, antisuicidal effect and is safe when used for a short period.

18.
ACS Omega ; 7(49): 45036-45044, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530328

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world and the most prevalent cancer of developing countries. Increased disease burden and a smaller number of approved targeted therapies are a growing concern worldwide. Isoindolinone motifs have been a central part of many pharmacological compounds, and their derivatives possess substantial anticancer potential. However, their anticancer potential against HNSCC has not been well investigated. In the current study, a series of 3-methyleneisoindolinones have been designed and synthesized and their late-stage intramolecular Heck cyclization was achieved to evaluate their anticancer potential against HNSCC cells. Additionally, in silico ADME profiling of synthesized compounds revealed their drug-likeness properties as potential drug candidates. Among the synthesized compounds, 3-bromo-5-methylpyridin-2-yl-3-methyleneisoindolin-1-one, i.e., 3n, with a pyridyl unit exhibited the most significant cytotoxicity against HNSCC cells. The cytotoxic potential of synthesized compounds varied depending on the nature of substituents present and has been well established with structure-activity relationship studies. Further, flow cytometric analysis showed that 3f, 3h, and 3n triggered intracellular oxidative stress, disrupted mitochondrial membrane potential, and interrupted the cell cycle of HNSCC cells in the S-phase and sub-G1 phase. Further, 3f, 3h, and 3n also exhibited pro-apoptotic potential and induced cellular apoptosis in the HNSCC cells. Overall, the findings of this study attributed 3-methyleneisoindolinone chemistry and efficacy evaluation and corroborated their anticancer potential against HNSCC. It will pave the way to further design and optimize novel 3-methyleneisoindolinone as effective antitumor agents, which may provide effective treatment modalities against HNSCC.

19.
J Family Med Prim Care ; 11(5): 1664-1671, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35800582

RESUMEN

Upsurge in mucormycosis cases in the second wave of SARS CoV2 infection in India has been reported. Uncontrolled diabetes is the major predisposing risk factor for these cases. The early diagnosis and surgical intervention with medical treatment may result in good clinical outcomes. The glycaemic control in diabetic patients also favours better treatment outcome in patients suffering from mucormycosis.

20.
Mol Neurobiol ; 59(10): 6107-6124, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35867206

RESUMEN

Alzheimer's disease (AD) is a progressive degeneration of neurons due to the accumulation of amyloid-ß peptide (Aß) and hyper-phosphorylation of tau protein in the neuronal milieu leading to increased oxidative stress and apoptosis. Numerous factors contribute towards the progression of AD, including miRNA, which are 22-24 nucleotides long sequence which acts as critical regulators of cellular processes by binding to 3' UTR of mRNA, regulating its expression post-transcriptionally. This review aims to determine the miRNA with the most significant dysregulation in the brain and cerebrospinal fluid (CSF) of human patients. A systemized inclusion/exclusion criterion has been utilized based on selected keywords followed by screening of those articles to conclude a list of 8 highly dysregulated miRNAs based on the fold change of AD vs control patients, which could be used in clinical testing as these miRNAs play central role in the pathophysiology of AD. Furthermore, a network study of highly dysregulated miRNA estimated the association of these miRNA in the mediation of Aß generation and aggregation, inhibition of autophagy, reduction of Aß clearance, microglial and astrocytic activation, neuro-inflammation, tau hyper-phosphorylation, and synaptic loss.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...