Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1381031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938383

RESUMEN

Introduction: Sarcoidosis is a multi-system inflammatory disease of unknown origin with heterogeneous clinical manifestations varying from a single organ non-caseating granuloma site to chronic systemic inflammation and fibrosis. Gene expression studies have suggested several genes and pathways implicated in the pathogenesis of sarcoidosis, however, due to differences in study design and variable statistical approaches, results were frequently not reproducible or concordant. Therefore, meta-analysis of sarcoidosis gene-expression datasets is of great importance to robustly establish differentially expressed genes and signalling pathways. Methods: We performed meta-analysis on 22 published gene-expression studies on sarcoidosis. Datasets were analysed systematically using same statistical cut-offs. Differentially expressed genes were identified by pooling of p-values using Edgington's method and analysed for pathways using Ingenuity Pathway Analysis software. Results: A consistent and significant signature of novel and well-known genes was identified, those collectively implicated both type I and type II interferon mediated signalling pathways in sarcoidosis. In silico functional analysis showed consistent downregulation of eukaryotic initiation factor 2 signalling, whereas cytokines like interferons and transcription factor STAT1 were upregulated. Furthermore, we analysed affected tissues to detect differentially expressed genes likely to be involved in granuloma biology. This revealed that matrix metallopeptidase 12 was exclusively upregulated in affected tissues, suggesting a crucial role in disease pathogenesis. Discussion: Our analysis provides a concise gene signature in sarcoidosis and expands our knowledge about the pathogenesis. Our results are of importance to improve current diagnostic approaches and monitoring strategies as well as in the development of targeted therapeutics.

2.
Artif Cells Nanomed Biotechnol ; 51(1): 476-490, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37656048

RESUMEN

Neonatal sepsis is considered as alarming medical emergency and becomes the common global reason of neonatal mortality. Non-specific symptoms and limitations of conventional diagnostic methods for neonatal sepsis mandate fast and reliable method to diagnose disease for point of care application. Recently, disease specific biomarkers have gained interest for rapid diagnosis that led to the development of electrochemical biosensor with enhanced specificity, sensitivity, cost-effectiveness and user-friendliness. Other than conventional biomarker C-reactive protein to diagnose neonatal sepsis, several potential biomarkers including Procalcitonin (PCT), Serum amyloid A (SAA) and other candidates are extensively investigated. The present review provides insights on advancements and diagnostic abilities of protein and nucleotide based biomarkers with their incorporation in developing electrochemical biosensors by employing novel fabrication strategies. This review provides an overview of most promising biomarker and its capability for neonatal sepsis diagnosis to fulfil future demand to develop electrochemical biosensor for point-of-care applications.


Asunto(s)
Sepsis Neonatal , Recién Nacido , Humanos , Sepsis Neonatal/diagnóstico , Biomarcadores , Sistemas de Atención de Punto
3.
Chem Biol Interact ; 365: 110050, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35917947

RESUMEN

Asthma, COPD, COVID-19, EGPA, Lung cancer, and Pneumonia are major chronic respiratory diseases (or CRDs) affecting millions worldwide and account for substantial morbidity and mortality. These CRDs are irreversible diseases that affect different parts of the respiratory system, imposing a considerable burden on different socio-economic classes. All these CRDs have been linked to increased eosinophils in the lungs. Eosinophils are essential immune mediators that contribute to tissue homeostasis and the pathophysiology of various diseases. Interestingly, elevated eosinophil level is associated with cellular processes that regulate airway hyperresponsiveness, airway remodeling, mucus hypersecretion, and inflammation in the lung. Therefore, eosinophil is considered the therapeutic target in eosinophil-mediated lung diseases. Although, conventional medicines like antibiotics, anti-inflammatory drugs, and bronchodilators are available to prevent CRDs. But the development of resistance to these therapeutic agents after long-term usage remains a challenge. However, progressive development in nanotechnology has unveiled the targeted nanocarrier approach that can significantly improve the pharmacokinetics of a therapeutic drug. The potential of the nanocarrier system can be specifically targeted on eosinophils and their associated components to obtain promising results in the pharmacotherapy of CRDs. This review intends to provide knowledge about eosinophils and their role in CRDs. Moreover, it also discusses nanocarrier drug delivery systems for the targeted treatment of CRDs.


Asunto(s)
Asma , Tratamiento Farmacológico de COVID-19 , Asma/tratamiento farmacológico , Eosinófilos , Humanos , Pulmón , Nanotecnología
4.
Chem Biol Interact ; 348: 109637, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506765

RESUMEN

Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.


Asunto(s)
Interleucinas/metabolismo , Terapia Molecular Dirigida/métodos , Nanomedicina/métodos , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedad Crónica , Humanos
5.
J Proteome Res ; 19(11): 4678-4689, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32786685

RESUMEN

Originating in the city of Wuhan in China in December 2019, COVID-19 has emerged now as a global health emergency with a high number of deaths worldwide. COVID-19 is caused by a novel coronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in pandemic conditions around the globe. We are in the battleground to fight against the virus by rapidly developing therapeutic strategies in tackling SARS-CoV-2 and saving human lives from COVID-19. Scientists are evaluating several known drugs either for the pathogen or the host; however, many of them are reported to be associated with side effects. In the present study, we report the molecular binding mechanisms of the natural alkaloid, noscapine, for repurposing against the main protease of SARS-CoV-2, a key enzyme involved in its reproduction. We performed the molecular dynamics (MD) simulation in an explicit solvent to investigate the molecular mechanisms of noscapine for stable binding and conformational changes to the main protease (Mpro) of SARS-CoV-2. The drug repurposing study revealed the high potential of noscapine and proximal binding to the Mpro enzyme in a comparative binding pattern analyzed with chloroquine, ribavirin, and favipiravir. Noscapine binds closely to binding pocket-3 of the Mpro enzyme and depicted stable binding with RMSD 0.1-1.9 Å and RMSF profile peak conformational fluctuations at 202-306 residues, and a Rg score ranging from 21.9 to 22.4 Å. The MM/PB (GB) SA calculation landscape revealed the most significant contribution in terms of binding energy with ΔPB -19.08 and ΔGB -27.17 kcal/mol. The electrostatic energy distribution in MM energy was obtained to be -71.16 kcal/mol and depicted high free energy decomposition (electrostatic energy) at 155-306 residues (binding pocket-3) of Mpro by a MM force field. Moreover, the dynamical residue cross-correlation map also stated that the high pairwise correlation occurred at binding residues 200-306 of the Mpro enzyme (binding pocket-3) with noscapine. Principal component analysis depicted the enhanced movement of protein atoms with a high number of static hydrogen bonds. The obtained binding results of noscapine were also well correlated with the pharmacokinetic parameters of antiviral drugs.


Asunto(s)
Betacoronavirus , Reposicionamiento de Medicamentos , Noscapina , Inhibidores de Proteasas , Proteínas no Estructurales Virales , Betacoronavirus/química , Betacoronavirus/enzimología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Noscapina/química , Noscapina/metabolismo , Pandemias , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Neumonía Viral/virología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
9.
Methods Mol Biol ; 1727: 433-442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29222803

RESUMEN

Nanoscience provides us with new opportunities to develop nanotechnologies for treating, in particular, central nervous system disorders such as Alzheimer disease and multiple sclerosis. From a methodological point of view, it is challenging to deliver drugs effectively across the blood-brain barrier and blood-cerebrospinal fluid barrier. Our 10-year data and reports from both in vivo and in vitro studies, however, have consistently proved that therapeutic drugs of different types can be generally loaded in/on the nanocarriers for targeted and programmable deliveries to the central nervous system with a high degree of efficacy. This chapter presents a protocol for the synthesis of biocompatible titanate nanofibers as low-cost drug delivery cargos. In addition, a procedure for loading the neuroprotective agent Cerebrolysin onto the nanofibers is briefly described. Finally, experimental observations on the use of nanodrug delivery for superior neuroprotective effects of Cerebrolysin in traumatic brain injury are given as a proof of concept as compared to normal drug alone.


Asunto(s)
Aminoácidos/administración & dosificación , Materiales Biocompatibles/síntesis química , Lesiones Traumáticas del Encéfalo/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Titanio/química , Aminoácidos/química , Animales , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Masculino , Nanofibras , Fármacos Neuroprotectores/química , Ratas , Ratas Wistar
10.
Mol Neurobiol ; 55(1): 322-334, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28861718

RESUMEN

The possibility that stress associated with chronic forced swim (FS) may exacerbate methamphetamine (METH) neurotoxicity was examined in a rat model. Rats were subjected to FS in a pool (30 °C) for 15 min daily for 8 days. Control rats were kept at room temperature. METH was administered (9 mg/kg, s.c.) in both control and FS rats and allowed to survive 4 h after the drug injection. METH in FS rats exacerbated BBB breakdown to Evans blue albumin (EBA) by 150 to 220% and [131]-Iodine by 250 to 380% as compared to naive rats after METH. The METH-induced BBB leakage was most pronounced in the cerebral cortex followed by the hippocampus, cerebellum, thalamus, and hypothalamus in both FS and naive rats. The regional BBB changes were associated with a reduction in the local cerebral blood flow (CBF). Brain edema was also higher by 2 to 4% in FS rats after METH than in naive animals. Neuronal and glial cell injuries were aggravated by threefold to fivefold after METH in FS than the control group. Pretreatment with ondansetron (1 mg/kg, i.p.) 30 min before METH injection in naive rats reduced the brain pathology and improved the CBF. However, TiO2-nanowired delivery of ondansetron (1 mg/kg, i.p.) was needed to reduce METH-induced brain damage, BBB leakage, reduction in CBF, and edema formation in FS. Taken together, these observations are the first to show that METH exacerbates BBB breakdown leading to neurotoxicity in FS animals. This effect of METH-induced BBB breakdown and brain pathology in naive and FS rats is attenuated by ondansetron treatment indicating an involvement of 5-HT3 receptors, not reported earlier.


Asunto(s)
Edema Encefálico/prevención & control , Metanfetamina/toxicidad , Nanocables/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Ondansetrón/administración & dosificación , Antagonistas del Receptor de Serotonina 5-HT3/administración & dosificación , Natación , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Edema Encefálico/inducido químicamente , Edema Encefálico/patología , Sistemas de Liberación de Medicamentos/métodos , Masculino , Ratas , Ratas Sprague-Dawley , Natación/psicología
11.
Mol Neurobiol ; 55(1): 312-321, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28861757

RESUMEN

Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (AßP) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering AßP (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 µl, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3 weeks of AßP administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and AßP deposits were examined in the brain. A significant reduction in AßP deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Encéfalo/patología , Agonistas de los Receptores Histamínicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Imidazoles/uso terapéutico , Receptores Histamínicos H4/agonistas , Tiourea/análogos & derivados , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Agonismo Inverso de Drogas , Agonismo Parcial de Drogas , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos H3/farmacología , Imidazoles/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Tiourea/farmacología , Tiourea/uso terapéutico
12.
Mol Neurobiol ; 55(1): 276-285, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28856566

RESUMEN

The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 °C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.


Asunto(s)
Antioxidantes/administración & dosificación , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Frío/efectos adversos , Indoles/administración & dosificación , Nanocables/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
13.
Mol Neurobiol ; 55(1): 359-369, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28875428

RESUMEN

Previous studies from our laboratory show that intraperitoneal injections of 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP, 20 mg/kg) daily within 2-h intervals for 5 days in mice induce Parkinson's disease (PD)-like symptoms on the 8th day. A significant decrease in dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) along with a marked decrease in the number of tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta (SNpc) and striatum (STr) confirms the validity of this model for studying PD. Since cerebrolysin (CBL) is a well-balanced composition of several neurotrophic factors and active peptide fragments, in the present investigation we examined the timed release of CBL using titanate nanospheres (TiNS) in treating PD in our mouse model. Our observations show that TiNS-CBL (in a dose of 3 ml/kg, i.v.) given after 2 days of MPTP administration for 5 days resulted in a marked increase in TH-positive cells in the SNpc and STr as compared to normal CBL. Also, TiNS-CBL resulted in significantly higher levels of DA, DOPAC, and HVA in SNpc and STr on the 8th day as compared to normal CBL therapy. TiNS-CBL also thwarted increased α-synuclein levels in the brain and in the cerebrospinal fluid (CSF) as well as neuronal nitric oxide synthase (nNOS) in the in PD brain as compared to untreated group. Behavioral function was also significantly improved in MPTP-treated animals that received TiNS-CBL. These observations are the first to demonstrate that timed release of TiNS-CBL has far more superior neuroprotective effects in PD than normal CBL.


Asunto(s)
Aminoácidos/administración & dosificación , Encéfalo/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Nanosferas/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Titanio/administración & dosificación , Aminoácidos/farmacocinética , Animales , Encéfalo/patología , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Liberación de Fármacos/efectos de los fármacos , Liberación de Fármacos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Nanosferas/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología
14.
Mol Neurobiol ; 55(1): 115-121, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28895060

RESUMEN

The present investigation is an expansion of previous studies which all share a basic experimental protocol of a porcine-induced cardiac arrest (CA) of 12 min followed by 8 min of cardiopulmonary resuscitation (CPR), different experimental treatments (immediate as well as postponed induced mild hypothermia and administration of much or less cool intravenous fluids), and a follow-up period of 3 h after which the animals were sacrificed. Another group of animals was studied according to the same protocol after 12-min CA and "standard CPR." After death (within 1 min), the brains were harvested and frozen in liquid nitrogen awaiting analysis. Control brains of animals were collected in the same way after short periods of untreated CA (0 min, 5 min, and 15-30 min). Previous studies concerning chiefly neuropathological changes were now expanded with analyses of different tissue indicators (glutathione, luminol, leucigenin, malonialdehyde, and myeloperoxidase) of cerebral oxidative injury. The results indicate that a great part of oxidative injury occurs within the first 5 min after CA. Immediate cooling by administration of much intravenous fluid results in less cerebral oxidative injury compared to less intravenous fluid administration. A 30-min postponement of induction of hypothermia results in a cerebral oxidative injury comparable to that of "standard CPR" or the oxidative injury found after 5 min of untreated CA. Intravenous administration of methylene blue (MB) during and immediately after CPR in combination with postponed cooling resulted in no statistical difference in any of the indicators of oxidative injury, except myeloperoxidase, and glutathione, when this treatment was compared with the negative controls, i.e., animals subjected to anesthesia alone.


Asunto(s)
Isquemia Encefálica/terapia , Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/terapia , Hipotermia Inducida/métodos , Azul de Metileno/uso terapéutico , Daño por Reperfusión/terapia , Animales , Animales Recién Nacidos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Porcinos , Resultado del Tratamiento
15.
Int Rev Neurobiol ; 137: 123-165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29132541

RESUMEN

More than 5.5 million Americans of all ages are suffering from Alzheimer's disease (AD) till today for which no suitable therapy has been developed so far. Thus, there is an urgent need to explore novel therapeutic measures to contain brain pathology in AD. The hallmark of AD includes amyloid-beta peptide (AßP) deposition and phosphorylation of tau in AD brain. Recent evidences also suggest a marked decrease in neurotrophic factors in AD. Thus, exogenous supplement of neurotrophic factors could be one of the possible ways for AD therapy. Human postmortem brain in AD shows alterations in histamine receptors as well, indicating an involvement of the amine in AD-induced brain pathology. In this review, we focused on role of histamine 3 and 4 receptor-modulating drugs in the pathophysiology of AD. Moreover, antibodies to histamine and tau appear to be also beneficial in reducing brain pathology, blood-brain barrier breakdown, and edema formation in AD. Interestingly, TiO2-nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors attenuated AßP deposition and reduced tau phosphorylation in AD brain leading to neuroprotection. Coadministration of cerebrolysin with histamine antibodies or tau antibodies has further enhanced neuroprotection in AD. These novel observations strongly suggest a role of nanomedicine in AD that requires further investigation.


Asunto(s)
Enfermedad de Alzheimer/terapia , Aminoácidos/administración & dosificación , Anticuerpos/administración & dosificación , Histamínicos/administración & dosificación , Titanio , Proteínas tau/inmunología , Animales , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Humanos
16.
Int Rev Neurobiol ; 137: 65-98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29132544

RESUMEN

The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO2-naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via nNOS expression involving specific histamine receptors.


Asunto(s)
Nanocables/administración & dosificación , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptores Histamínicos/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/prevención & control , Regulación hacia Arriba/fisiología , Animales , Cimetidina/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Antagonistas de los Receptores Histamínicos H1/administración & dosificación , Antagonistas de los Receptores H2 de la Histamina/administración & dosificación , Humanos , Masculino , Pirilamina/administración & dosificación , Ratas , Flujo Sanguíneo Regional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
Int Rev Neurobiol ; 137: 47-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29132543

RESUMEN

Influence of iron oxide magnetic nanoparticles (IOMNPs, 10nm in diameter, 0.25 or 0.50mg/mL in 100µL, i.v.) on the blood-brain barrier (BBB) permeability, edema formation, and neuronal or glial changes within 4-24h after administration was examined in normal rats and after a focal spinal cord injury (SCI). Furthermore, effect of cerebrolysin, a balanced composition of several neurotrophic factors, and active peptide fragments was also evaluated on IOMNP-induced changes in central nervous system (CNS) pathology. The SCI was inflicted in rats by making a longitudinal incision into the right dorsal horn of the T10-11 segments and allowed to survive 4 or 24h after trauma. Cerebrolysin (2.5mL/kg, i.v.) was given either 30min before IOMNP injection in the 4-h SCI group or 4h after injury in the 24-h survival groups. Control group received cerebrolysin in identical situation following IOMNP administration. In all groups, leakage of serum albumin in the CNS as a marker of BBB breakdown and activation of astrocytes using glial fibrillary acidic protein was evaluated by immunohistochemistry. The neuronal injury was examined by Nissl staining. The IOMNPs alone in either low or high doses did not induce CNS pathology either following 4 or 24h after administration. However, administration of IOMNPs in SCI group slightly enhanced the pathological changes in the CNS after 24h but not 4h after trauma. Cerebrolysin treatment markedly attenuated IOMNP-induced aggravation of SCI-induced cord pathology and induced significant neuroprotection. These observations are the first to show that IOMNPs are safe for the CNS and cerebrolysin treatment prevented CNS pathology following a combination of trauma and IOMNP injection. This indicated that cerebrolysin might be used as adjunct therapy during IOMNP administration in disease conditions, not reported earlier.


Asunto(s)
Aminoácidos/uso terapéutico , Compuestos Férricos/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/terapia , Administración Intravenosa , Animales , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Nanopartículas/administración & dosificación , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/inducido químicamente , Traumatismos de la Médula Espinal/patología , Resultado del Tratamiento
18.
Int Rev Neurobiol ; 137: xi-xiv, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29132546
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA