Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(17): 2877-2891, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38689500

RESUMEN

Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.


Asunto(s)
Microscopía por Crioelectrón , Membrana Dobles de Lípidos , Aprendizaje Automático , Microscopía por Crioelectrón/métodos , Membrana Dobles de Lípidos/química , Procesamiento de Imagen Asistido por Computador/métodos
2.
Emerg Top Life Sci ; 7(1): 55-65, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36606590

RESUMEN

The development of electron cryomicroscopy (cryo-EM) has evolved immensely in the last several decades and is now well-established in the analysis of protein structure both in isolation and in their cellular context. This review focuses on the history and application of cryo-EM to the analysis of membrane architecture. Parallels between the levels of organization of protein structure are useful in organizing the discussion of the unique parameters that influence membrane structure and function. Importantly, the timescales of lipid motion in bilayers with respect to the timescales of sample vitrification is discussed and reveals what types of membrane structure can be reliably extracted in cryo-EM images of vitrified samples. Appreciating these limitations, a review of the application of cryo-EM to examine the lateral organization of ordered and disordered domains in reconstituted and biologically derived membranes is provided. Finally, a brief outlook for further development and application of cryo-EM to the analysis of membrane architecture is provided.


Asunto(s)
Proteínas de la Membrana , Vitrificación , Microscopía por Crioelectrón/métodos , Membranas , Proteínas de la Membrana/química , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA