Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 206: 108166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039586

RESUMEN

Extensive chromium (Cr) release into water and soil severely impairs crop productivity worldwide. Nanoparticle (NP) technology has shown potential for reducing heavy metal toxicity and improving plant physicochemical profiles. Herein, we investigated the effects of exogenous zinc oxide NPs (ZnO-NPs) on alleviating Cr stress in Cr-sensitive and tolerant chickpea genotypes. Hydroponically grown chickpea plants were exposed to Cr stress (0 and 120 µM) and ZnO-NPs (25 µM, 20 nm size) twice at a 7-day interval. Cr exposure reduced physiochemical profiles, ion content, cell viability, and gas exchange parameters, and it increased organic acid exudate accumulation in roots and the Cr content in the roots and leaves of the plants. However, ZnO-NP application significantly increased plant growth, enzymatic activities, proline, total soluble sugar, and protein and gas exchange parameters and reduced malondialdehyde and hydrogen peroxide levels, Cr content in roots, and organic acid presence to improve root cell viability. This study provides new insights into the role of ZnO-NPs in reducing oxidative stress along with Cr accumulation and mobility due to low levels of organic acids in chickpea roots. Notably, the Cr-tolerant genotype exhibited more pronounced alleviation of Cr stress by ZnO-NPs. These findings highlight the potential of ZnO-NP in regulating plant growth, reducing Cr accumulation, and promoting sustainable agricultural development.


Asunto(s)
Cicer , Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Cromo/toxicidad , Óxido de Zinc/farmacología , Cicer/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Nanopartículas/química , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad
2.
Plant Physiol Biochem ; 200: 107767, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37220675

RESUMEN

Chromium (Cr), a highly toxic redox-active metal cation in soil, seriously threatens global agriculture by affecting nutrient uptake and disturbing various physio-biochemical processes in plants, thereby reducing yields. Here, we examined the effects of different concentrations of Cr alone and in combination with hydrogen sulfide (H2S) application on the growth and physio-biochemical performance of two mungbeans (Vigna radiata L.) varieties, viz. Pusa Vishal (PV; Cr tolerant) and Pusa Ratna (PR; Cr sensitive), growing in a pot in hydroponics. Plants were grown in the pot experiment to examine their growth, enzymatic and non-enzymatic antioxidant levels, electrolyte balance, and plasma membrane (PM) H+-ATPase activity. Furthermore, root anatomy and cell death were analysed 15 days after sowing both varieties in hydroponic systems. The Cr-induced accumulation of reactive oxygen species caused cell death and affected the root anatomy and growth of both varieties. However, the extent of alteration in anatomical features was less in PV than in PR. Exogenous application of H2S promoted plant growth, thereby improving plant antioxidant activities and reducing cell death by suppressing Cr accumulation and translocation. Seedlings of both cultivars treated with H2S exhibited enhanced photosynthesis, ion uptake, glutathione, and proline levels and reduced oxidative stress. Interestingly, H2S restricted the translocation of Cr to aerial parts of plants by improving the nutrient profile and viability of root cells, thereby relieving plants from oxidative bursts by activating the antioxidant machinery through triggering the ascorbate-glutathione cycle. Overall, H2S application improved the nutrient profile and ionic homeostasis of Cr-stressed mungbean plants. These results highlight the importance of H2S application in protecting crops against Cr toxicity. Our findings can be utilised to develop management strategies to improve heavy metal tolerance among crops.


Asunto(s)
Sulfuro de Hidrógeno , Vigna , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Vigna/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Cromo/toxicidad , Estrés Oxidativo , Glutatión/metabolismo , Productos Agrícolas/metabolismo
3.
Front Plant Sci ; 13: 963394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35971511

RESUMEN

Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.

4.
Sci Rep ; 12(1): 8005, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568714

RESUMEN

Chromium (Cr) accumulation in crops reduces yield. Here, we grew two chickpea cultivars, Pusa 2085 (Cr-tolerant) and Pusa Green 112 (Cr-sensitive), in hydroponic and pot conditions under different Cr treatments: 0 and 120 µM Cr and 120 µM Cr + 100 mM glycine betaine (GB). For plants grown in the hydroponic media, we evaluated root morphological attributes and plasma membrane integrity via Evans blue uptake. We also estimated H+-ATPase activity in the roots and leaves of both cultivars. Plants in pots under conditions similar to those of the hydroponic setup were used to measure growth traits, oxidative stress, chlorophyll contents, enzymatic activities, proline levels, and nutrient elements at the seedling stage. Traits such as Cr uptake in different plant parts after 42 days and grain yield after 140 days of growth were also evaluated. In both cultivars, plant growth traits, chlorophyll contents, enzymatic activities, nutrient contents, and grain yield were significantly reduced under Cr stress, whereas oxidative stress and proline levels were increased compared to the control levels. Further, Cr uptake was remarkably decreased in the roots and leaves of Cr-tolerant than in Cr-sensitive cultivars. Application of GB led to improved root growth and morpho-physiological attributes and reduced oxidative stress along with reduced loss in plasma membrane integrity and subsequently increase in H+-ATPase activity. An increment in these parameters shows that the exogenous application of GB improves the Cr stress tolerance in chickpea plants.


Asunto(s)
Cicer , Contaminantes del Suelo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Betaína/metabolismo , Betaína/farmacología , Clorofila/metabolismo , Cromo/metabolismo , Cicer/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Prolina/metabolismo , ATPasas de Translocación de Protón/metabolismo , Contaminantes del Suelo/metabolismo
5.
Front Plant Sci ; 12: 735129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659304

RESUMEN

Chromium (Cr) presently used in various major industries and its residues possess a potent environmental threat. Contamination of soil and water resources due to Cr ions and its toxicity has adversely affected plant growth and crop productivity. Here, deleterious effects of different levels of Cr (VI) treatments i.e., 0, 30, 60, 90, and 120 µM on two mungbean cultivars, Pusa Vishal (PV) and Pusa Ratna (PR), in hydroponic and pot conditions were evaluated. Germination, seedling growth, biomass production, antioxidant enzyme, electrolytic leakage, oxidative stress (hydrogen peroxide and malondialdehyde), and proline content were determined to evaluate the performance of both cultivars under hydroponic conditions for 15 days. The hydroponic results were further compared with the growth and seed yield attributes of both the genotypes in pot experiments performed over 2 years. Seedling growth, biomass production, total chlorophyll (Chl), Chl-a, Chl-b, nitrogen content, plant height, seed protein, and seed yield decreased significantly under the 120 µM Cr stress level. Activities of antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase and peroxidase increased in the leaves following Cr exposure at 60-90 µM but declined at 120 µM. Cr-induced reductions in growth and seed yield attributes were more in the sensitive than in the tolerant cultivar. Cr accumulation in the roots, stems, leaves, and seeds increased with an increase in Cr concentrations in the pot conditions. Furthermore, for both cultivars, there were significant negative correlations in morpho-physiological characteristics under high Cr concentrations. Overall results suggest that (PR) is more sensitive to Cr stress (PV) at the seedling stage and in pot conditions. Furthermore, (PV) can be utilized to study the mechanisms of Cr tolerance and in breeding programs to develop Cr-resistant varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...