Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Clin Cancer Res ; 28(7): 1391-1401, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35046060

RESUMEN

PURPOSE: Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN: We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS: [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 µCi and 750 µCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 µCi and 500 µCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 µCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS: Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Neoplasias Pulmonares/radioterapia , Proteínas de la Membrana/genética , Ratones , Radioinmunoterapia , Carcinoma Pulmonar de Células Pequeñas/radioterapia , Distribución Tisular
2.
J Nucl Med ; 63(4): 629-636, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34353869

RESUMEN

Immuno-PET is a powerful tool to noninvasively characterize the in vivo biodistribution of engineered antibodies. Methods: L1 cell adhesion molecule-targeting humanized (HuE71) IgG1 and IgG4 antibodies bearing identical variable heavy- and light-chain sequences but different fragment crystallizable (Fc) portions were radiolabeled with 89Zr, and the in vivo biodistribution was studied in SKOV3 ovarian cancer xenografted nude mice. Results: In addition to showing uptake in L1 cell adhesion molecule-expressing SKOV3 tumors, as does its parental counterpart HuE71 IgG1, the afucosylated variant having enhanced Fc-receptor affinity showed high nonspecific uptake in lymph nodes. On the other hand, aglycosylated HuE71 IgG1 with abrogated Fc-receptor binding did not show lymphoid uptake. The use of the IgG4 subclass showed high nonspecific uptake in the kidneys, which was prevented by mutating serine at position 228 to proline in the hinge region of the IgG4 antibody to mitigate in vivo fragment antigen-binding arm exchange. Conclusion: Our findings highlight the influence of Fc modifications and the choice of IgG subclass on the in vivo biodistribution of antibodies and the potential outcomes thereof.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Molécula L1 de Adhesión de Célula Nerviosa , Animales , Anticuerpos Monoclonales Humanizados/metabolismo , Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Ratones , Ratones Desnudos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Distribución Tisular
3.
Clin Cancer Res ; 28(5): 948-959, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907079

RESUMEN

PURPOSE: Advances in our understanding of the contribution of aberrant glycosylation to the pro-oncogenic signaling and metastasis of tumor cells have reinvigorated the development of mucin-targeted therapies. Here, we validate the tumor-targeting ability of a novel monoclonal antibody (mAb), AR9.6, that binds MUC16 and abrogates downstream oncogenic signaling to confer a therapeutic response. EXPERIMENTAL DESIGN: The in vitro and ex vivo validation of the binding of AR9.6 to MUC16 was achieved via flow cytometry, radioligand binding assay (RBA), and immunohistochemistry (IHC). The in vivo MUC16 targeting of AR9.6 was validated by creating a 89Zr-labeled radioimmunoconjugate of the mAb and utilizing immunoPET and ex vivo biodistribution studies in xenograft models of human ovarian and pancreatic cancer. RESULTS: Flow cytometry, RBA, and IHC revealed that AR9.6 binds to ovarian and pancreatic cancer cells in an MUC16-dependent manner. The in vivo radiopharmacologic profile of 89Zr-labeled AR9.6 in mice bearing ovarian and pancreatic cancer xenografts confirmed the MUC16-dependent tumor targeting by the radioimmunoconjugate. Radioactivity uptake was also observed in the distant lymph nodes (LNs) of mice bearing xenografts with high levels of MUC16 expression (i.e., OVCAR3 and Capan-2). IHC analyses of these PET-positive LNs highlighted the presence of shed antigen as well as necrotic, phagocytized, and actively infiltrating neoplastic cells. The humanization of AR9.6 did not compromise its ability to target MUC16-expressing tumors. CONCLUSIONS: The unique therapeutic mechanism of AR9.6 combined with its excellent in vivo tumor targeting makes it a highly promising theranostic agent. huAR9.6 is poised for clinical translation to impact the management of metastatic ovarian and pancreatic cancers.


Asunto(s)
Inmunoconjugados , Neoplasias Ováricas , Neoplasias Pancreáticas , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno Ca-125 , Carcinogénesis , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/uso terapéutico , Proteínas de la Membrana/metabolismo , Ratones , Mucinas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Radioisótopos/uso terapéutico , Distribución Tisular , Circonio , Neoplasias Pancreáticas
4.
Cancer Cell ; 39(7): 973-988.e9, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34115989

RESUMEN

Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/inmunología , Regulación Neoplásica de la Expresión Génica , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Microambiente Tumoral , Animales , Apoptosis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pronóstico , Estudios Retrospectivos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Bioconjug Chem ; 32(7): 1255-1262, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33835770

RESUMEN

Delta-like ligand 3 (DLL3) is a therapeutic target for the treatment of small cell lung cancer, neuroendocrine prostate cancer, and isocitrate dehydrogenase mutant glioma. In the clinic, DLL3-targeted 89Zr-immunoPET has the potential to aid in the assessment of disease burden and facilitate the selection of patients suitable for therapies that target the antigen. The overwhelming majority of 89Zr-labeled radioimmunoconjugates are synthesized via the random conjugation of desferrioxamine (DFO) to lysine residues within the immunoglobulin. While this approach is admittedly facile, it can produce heterogeneous constructs with suboptimal in vitro and in vivo behavior. In an effort to circumvent these issues, we report the development and preclinical evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted immunoPET. To this end, we modified a cysteine-engineered variant of the DLL3-targeting antibody SC16-MB1 with two thiol-reactive variants of DFO: one bearing a maleimide moiety (Mal-DFO) and the other containing a phenyloxadiazolyl methyl sulfone group (PODS-DFO). In an effort to obtain immunoconjugates with a DFO-to-antibody ratio (DAR) of 2, we explored both the reduction of the antibody with tris(2-carboxyethyl) phosphine (TCEP) as well as the use of a combination of glutathione and arginine as reducing and stabilizing agents, respectively. While exerting control over the DAR of the immunoconjugate proved cumbersome using TCEP, the use of glutathione and arginine enabled the selective reduction of the engineered cysteines and thus the formation of homogeneous immunoconjugates. A head-to-head comparison of the resulting 89Zr-radioimmunoconjugates in mice bearing DLL3-expressing H82 xenografts revealed no significant differences in tumoral uptake and showed comparable radioactivity concentrations in most healthy nontarget organs. However, 89Zr-DFOPODS-DAR2SC16-MB1 produced 30% lower uptake (3.3 ± 0.5 %ID/g) in the kidneys compared to 89Zr-DFOMal-DAR2SC16-MB1 (4.7 ± 0.5 %ID/g). In addition, H82-bearing mice injected with a 89Zr-labeled isotype-control radioimmunoconjugate synthesized using PODS exhibited ∼40% lower radioactivity in the kidneys compared to mice administered its maleimide-based counterpart. Taken together, these results demonstrate the improved in vivo performance of the PODS-based radioimmunoconjugate and suggest that a stable, well-defined DAR2 radiopharmaceutical may be suitable for the clinical immunoPET of DLL3-expressing cancers.


Asunto(s)
Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química
6.
Bioconjug Chem ; 32(7): 1177-1191, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32197571

RESUMEN

Immuno-PET using desferrioxamine (DFO)-conjugated zirconium-89 ([89Zr]Zr4+)-labeled antibodies is a powerful tool used for preclinical and clinical molecular imaging. However, a comprehensive study evaluating the variables involved in DFO-conjugation and 89Zr-radiolabeling of antibodies and their impact on the in vitro and in vivo behavior of the resulting radioimmunoconjugates has not been adequately performed. Here, we synthesized different DFO-conjugates of the HER2-targeting antibody (Ab)-trastuzumab, dubbed T5, T10, T20, T60, and T200-to indicate the molar equivalents of DFO used for bioconjugation. Next we radiolabeled the immunoconjugates with ([89Zr]Zr4+) under a comprehensive set of reaction conditions including different buffers (PBS, chelexed-PBS, TRIS/HCl, HEPES; ± radioprotectants), different reaction volumes (0.1-1 mL), variable amounts of DFO-conjugated Ab (5, 25, 50 µg), and radioactivity (0.2-1.0 mCi; 7.4-37 MBq). We evaluated the effects of these variables on radiochemical yield (RCY), molar activity (Am)/specific activity (As), immunoreactive fraction, and ultimately the in vivo biodistribution profile and tumor targeting ability of the trastuzumab radioimmunoconjugates. We show that increasing the degree of DFO conjugation to trastuzumab increased the RCY (∼90%) and Am/As (∼194 MBq/nmol; 35 mCi/mg) but decreased the HER2-binding affinity (3.5×-4.6×) and the immunoreactive fraction of trastuzumab down to 50-64%, which translated to dramatically inferior in vivo performance of the radioimmunoconjugate. Cell-based immunoreactivity assays and standard binding affinity analyses using surface plasmon resonance (SPR) did not predict the poor in vivo performance of the most extreme T200 conjugate. However, SPR-based concentration free calibration analysis yielded active antibody concentration and was predictive of the in vivo trends. Positron emission tomography (PET) imaging and biodistribution studies in a HER2-positive xenograft model revealed activity concentrations of 38.7 ± 3.8 %ID/g in the tumor and 6.3 ± 4.1 %ID/g in the liver for ([89Zr]Zr4+)-T5 (∼1.4 ± 0.5 DFOs/Ab) at 120 h after injection of the radioimmunoconjugates. On the other hand, ([89Zr]Zr4+)-T200 (10.9 ± 0.7 DFOs/Ab) yielded 16.2 ± 3.2 %ID/g in the tumor versus 27.5 ± 4.1 %ID/g in the liver. Collectively, our findings suggest that synthesizing trastuzumab immunoconjugates bearing 1-3 DFOs per Ab (T5 and T10) combined with radiolabeling performed in low reaction volumes using Chelex treated PBS or HEPEs without a radioprotectant provided radioimmunoconjugates having high Am/As (97 MBq/nmol; 17.5 ± 2.2 mCi/mg), highly preserved immunoreactive fractions (86-93%), and favorable in vivo biodistribution profile with excellent tumor uptake.


Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Circonio/química
7.
Mol Pharm ; 17(8): 3140-3147, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32644804

RESUMEN

Ovarian cancer is the fifth leading cause of cancer deaths among women, accounting for more deaths than any other cancer of the female reproductive system. The foundation of its management consists of cytoreductive surgery (CRS) followed by systemic chemotherapy, with the completeness of surgical resection consistently identified as one of the most important prognostic factors for the disease. The goal of our investigation is the development of a near-infrared fluorescence (NIRF) imaging agent for the intraoperative imaging of high-grade serous ovarian cancer (HGSOC). As surgeons are currently limited to the visual and manual assessment of tumor tissue during CRS, this technology could facilitate more complete resections as well as serve important functions at other points in the surgical management of the disease. Elevated levels of cancer antigen 125 (CA125) have proven a useful biomarker of HGSOC, and the CA125-targeting antibody B43.13 has shown potential as a platform for immunoPET imaging in murine models of ovarian cancer. Herein, we report the development of a NIRF imaging agent based on B43.13: ssB43.13-IR800. We site-specifically modified the heavy chain glycans of B43.13 with the near-infrared dye IRDye 800CW using a chemoenzymatic approach developed in our laboratories. SDS-PAGE analysis confirmed the specificity of the conjugation reaction, and flow cytometry, immunostaining, and fluorescence microscopy verified the specific binding of ssB43.13-IR800 to CA125-expressing OVCAR3 human ovarian cancer cells. NIRF imaging studies demonstrated that ssB43.13-IR800 can be used to image CA125-expressing HGSOC tumors in subcutaneous, orthotopic, and patient-derived xenograft mouse models. Finally, ex vivo analyses confirmed that ssB43.13-IR800 can bind and identify CA125-expressing cells in primary tumor and metastatic lymph node samples from human patients with HGSOC.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Espectroscopía Infrarroja Corta/métodos , Animales , Biomarcadores de Tumor/metabolismo , Antígeno Ca-125/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Neoplasias Ováricas/metabolismo
8.
Nucl Med Biol ; 86-87: 9-19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32403071

RESUMEN

INTRODUCTION: Despite its limitations, CA125 remains the most widely used biomarker for the diagnosis and treatment monitoring of ovarian cancer. Targeting the unshed portion of serum biomarkers such as CA125/MUC16 may afford more specific imaging and targeting of MUC16-positive tumors in High Grade Serous Ovarian Cancer (HGSOC) patients. METHODS: Six monoclonal antibodies raised against the 58 amino acid sequence between the extracellular cleavage site and the transmembrane region of MUC16 were radiolabeled with [89Zr]Zr4+. The radioimmunoconjugates were evaluated in vitro for molar activities, target binding affinity, cellular internalization and serum stability. In vivo characterization was performed via longitudinal positron emission tomography (PET) imaging and ex vivo biodistribution studies in mice bearing subcutaneous xenografts of SKOV3 cells transfected with the proximal 114 amino-acids of MUC16 carboxy-terminus (SKOV3+). RESULTS: In vitro screening identified 9C9 and 4H11 as the lead antibody candidates based on their comparable binding affinities, serum stability and cellular internalization profiles. Despite an identical molecular footprint for binding to MUC16, [89Zr]Zr-DFO-4H11 yielded a more favorable in vivo radiopharmacologic profile. Furthermore, a humanized variant of 4H11 capable of binding MUC16 in vitro also yielded excellent in vivo profile in subcutaneous xenograft models of SKOV3+, OVCAR3 tumors and a patient-derived xenograft model representative of HGSOC. CONCLUSION: Radiopharmacologic screening of antibodies early during their development can provide crucial information pertinent to the in vitro characterization and in vivo pharmacokinetics. The favorable in vivo profile demonstrated by humanized 4H11 combined with the use of its murine predecessor for immunohistochemical staining of biopsied tumor tissues from HGSOC patients makes a unique pair of antibodies that is poised for clinical translation.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígeno Ca-125/química , Antígeno Ca-125/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Neoplasias Ováricas/inmunología , Investigación Biomédica Traslacional , Línea Celular Tumoral , Femenino , Humanos , Dominios Proteicos , Distribución Tisular
9.
Theranostics ; 10(4): 1746-1757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042334

RESUMEN

Rationale: The overwhelming majority of radioimmunoconjugates are produced via random conjugation methods predicated on attaching bifunctional chelators to the lysines of antibodies. However, this approach inevitably produces poorly defined and heterogeneous immunoconjugates because antibodies have several lysines distributed throughout their structure. To circumvent this issue, we have previously developed a chemoenzymatic bioconjugation strategy that site-specifically appends cargoes to the biantennary heavy chain glycans attached to CH2 domains of the immunoglobulin's Fc region. In the study at hand, we explore the effects of this approach to site-specific bioconjugation on the Fc receptor binding and in vivo behavior of radioimmunoconjugates. Methods: We synthesized three desferrioxamine (DFO)-labeled immunoconjugates based on the HER2-targeting antibody pertuzumab: one using random bioconjugation methods (DFO-nsspertuzumab) and two using variants of our chemoenzymatic protocol (DFO-sspertuzumab-EndoS and DFO-sspertuzumab-ßGal). Subsequently, we characterized these constructs and evaluated their ability to bind HER2, human FcγRI (huFcγRI), and mouse FcγRI (muFcγRI). After radiolabeling the immunoconjugates with zirconium-89, we conducted PET imaging and biodistribution studies in two different mouse models of HER2-expressing breast cancer. Results: MALDI-ToF and SDS-PAGE analysis confirmed the site-specific nature of the bioconjugation, and flow cytometry and surface plasmon resonance (SPR) revealed that all three immunoconjugates bind HER2 as effectively as native pertuzumab. Critically, however, SPR experiments also illuminated that DFO-sspertuzumab-EndoS possesses an attenuated binding affinity for huFcγRI (17.4 ± 0.3 nM) compared to native pertuzumab (4.7 ± 0.2 nM), DFO-nsspertuzumab (4.1 ± 0.1 nM), and DFO-sspertuzumab-ßGal (4.7 ± 0.2 nM). ImmunoPET and biodistribution experiments in athymic nude mice bearing HER2-expressing BT474 human breast cancer xenografts yielded no significant differences in the in vivo behavior of the radioimmunoconjugates. Yet experiments in tumor-bearing humanized NSG mice revealed that 89Zr-DFO-sspertuzumab-EndoS produces higher activity concentrations in the tumor (111.8 ± 39.9 %ID/g) and lower activity concentrations in the liver and spleen (4.7 ± 0.8 %ID/g and 13.1 ± 4.0 %ID/g, respectively) than its non-site-specifically labeled cousin, a phenomenon we believe stems from the altered binding of the former to huFcγRI. Conclusion: These data underscore that this approach to site-specific bioconjugation not only produces more homogeneous and well-defined radioimmunoconjugates than traditional methods but may also improve their in vivo performance in mouse models by reducing binding to FcγRI.


Asunto(s)
Neoplasias de la Mama/metabolismo , Polisacáridos/química , Radiofármacos/farmacocinética , Receptores de IgG/metabolismo , Animales , Anticuerpos/efectos de los fármacos , Anticuerpos/inmunología , Anticuerpos Monoclonales Humanizados , Antineoplásicos Inmunológicos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Deferoxamina/química , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Receptor ErbB-2/metabolismo , Receptores de IgG/química , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio
10.
Nucl Med Biol ; 71: 32-38, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31128476

RESUMEN

INTRODUCTION: Determination of the target-binding fraction (TBF) of radiopharmaceuticals using cell-based assays is prone to inconsistencies arising from several intrinsic and extrinsic factors. Here, we report a cell-free quantitative method of analysis to determine the TBF of radioligands. METHODS: Magnetic beads functionalized with Ni-NTA or streptavidin were incubated with 1 µg of histidine-tagged or biotinylated antigen of choice for 15 min, followed by incubating 1 ng of the radioligand for 30 min. The beads, supernatant and wash fractions were measured for radioactivity on a gamma counter. The TBF was determined by quantifying the percentage of activity associated with the magnetic beads. RESULTS: The described method works robustly with a variety of radioisotopes and class of molecules used as radioligands. The entire assay can be completed within 2 h. CONCLUSION: The described method yields results in a rapid and reliable manner whilst improving and extending the scope of previously described bead-based radioimmunoassays. ADVANCES IN KNOWLEDGE: Using a bead-based radioligand binding assay overcomes the limitations of traditional cell-based assays. The described method is applicable to antibody as well as non-antibody based radioligands and is independent of the effect of target antigen density on cells, the choice of radioisotope used for synthesis of the radioligand and the temperature at which the assay is performed. IMPLICATIONS FOR PATIENT CARE: The bead-based radioligand binding assay is significantly easier to perform and is ideally suited for adoption by the radiopharmacy as a quality control method of analysis to fulfill the criteria for release of radiopharmaceuticals in the clinic. The use of this assay is likely to ensure a more reliable validation of radiopharmaceutical quality and result in fewer failed doses, which could ultimately translate to an efficient release of radiopharmaceuticals for administration to patients in the clinic.


Asunto(s)
Bioensayo/métodos , Radiofármacos/metabolismo , Cinética , Ligandos , Control de Calidad , Radiofármacos/química , Estreptavidina/química , Estreptavidina/metabolismo
11.
J Nucl Med ; 60(8): 1174-1182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30733320

RESUMEN

Antibodies are promising vectors for PET imaging. However, the high uptake of radioimmunoconjugates in nontarget tissues such as the liver and spleen hampers their performance as radiotracers. This off-target uptake can lead to suboptimal tumor-to-background activity concentration ratios, decreasing the contrast of images and reducing their diagnostic utility. A possible cause of this uptake is the sequestration of radioimmunoconjugates by immune cells bearing Fc-γ-receptors (FcγR) that bind to the Fc regions of antibodies. Methods: Since the heavy chain glycans influence the affinity of FcγR for the Fc domain, we set out to investigate whether radioimmunoconjugates with truncated glycans would exhibit altered binding to FcγRI and, in turn, improved in vivo performance. Using the HER2-targeting antibody trastuzumab, we synthesized a series of desferrioxamine-bearing immunoconjugates with differing glycosylation states and interrogated their FcγRI binding via surface plasmon resonance, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, we labeled these immunoconjugates with 89Zr and explored their biodistribution in athymic nude, NSG, and humanized NSG mice bearing human epidermal growth factor receptor 2-expressing human breast cancer xenografts. Results: We observed a strong correlation between the impaired in vitro FcγRI binding of deglycosylated immunoconjugates and significant decreases in the in vivo off-target uptake of the corresponding 89Zr-labeled radioimmunoconjugates (i.e., liver activity concentrations are reduced by ∼3.5-fold in humanized NSG mice). These reductions in off-target uptake were accompanied by concomitant increases in the tumoral activity concentrations of the glycoengineered radioimmunoconjugates, ultimately yielding improved tumor-to-healthy organ contrast and higher quality PET images. Conclusion: Our findings suggest that the deglycosylation of antibodies represents a facile strategy for improving the quality of immuno-PET in animal models as well as in certain patient populations.


Asunto(s)
Inmunoconjugados/química , Tomografía de Emisión de Positrones , Receptores de IgG/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Deferoxamina/química , Femenino , Glicosilación , Humanos , Inmunoglobulina G/química , Técnicas In Vitro , Cinética , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Radiofármacos , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie , Distribución Tisular , Trastuzumab/química , Circonio/química
12.
Clin Cancer Res ; 25(2): 881-891, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30254080

RESUMEN

PURPOSE: The impact of androgen receptor (AR) activity in breast cancer biology is unclear. We characterized and tested a novel therapy to an AR-governed target in breast cancer.Experimental Design: We evaluated the expression of prototypical AR gene products human kallikrein 2 (hK2) and PSA in breast cancer models. We screened 13 well-characterized breast cancer cell lines for hK2 and PSA production upon in vitro hormone stimulation by testosterone [dihydrotestosterone (DHT)]. AR-positive lines were further evaluated by exposure to estrogen (17ß-Estradiol) and the synthetic progestin D-Norgestrel. We then evaluated an anti-hK2-targeted radiotherapy platform (hu11B6), labeled with alpha (α)-particle emitting Actinium-225, to specifically treat AR-expressing breast cancer xenografts under hormone stimulation. RESULTS: D-Norgestrel and DHT activated the AR pathway, while 17ß-Estradiol did not. Competitive binding for AR protein showed similar affinity between DHT and D-Norgestrel, indicating direct AR-ligand interaction. In vivo production of hK2 was sufficient to achieve site-specific delivery of therapeutic radionuclide to tumor tissue at >20-fold over background muscle uptake; effecting long-term local tumor control. CONCLUSIONS: [225Ac]hu11B6 targeted radiotherapy was potentiated by DHT and by D-Norgestrel in murine xenograft models of breast cancer. AR activity in breast cancer correlates with kallikrein-related peptidase-2 and can be activated by D-Norgestrel, a common contraceptive, and AR induction can be harnessed for hK2-targeted breast cancer α-emitter radiotherapy.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias de la Mama/metabolismo , Inmunoconjugados/administración & dosificación , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Biomarcadores de Tumor , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Femenino , Hexoquinasa/antagonistas & inhibidores , Humanos , Inmunoconjugados/farmacocinética , Ratones , Terapia Molecular Dirigida , Radioinmunoterapia , Radiometría , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Commun ; 9(1): 5137, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510281

RESUMEN

Human epidermal growth factor receptor 2 (HER2) gene amplification and/or protein overexpression in tumors is a prerequisite for initiation of trastuzumab therapy. Although HER2 is a cell membrane receptor, differential rates of endocytosis and recycling engender a dynamic surface pool of HER2. Since trastuzumab must bind to the extracellular domain of HER2, a depressed HER2 surface pool hinders binding. Using in vivo biological models and cultures of fresh human tumors, we find that the caveolin-1 (CAV1) protein is involved in HER2 cell membrane dynamics within the context of receptor endocytosis. The translational significance of this finding is highlighted by our observation that temporal CAV1 depletion with lovastatin increases HER2 half-life and availability at the cell membrane resulting in improved trastuzumab binding and therapy against HER2-positive tumors. These data show the important role that CAV1 plays in the effectiveness of trastuzumab to target HER2-positive tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Caveolina 1/metabolismo , Neoplasias/tratamiento farmacológico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Caveolina 1/genética , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Femenino , Humanos , Lovastatina/administración & dosificación , Células MCF-7 , Ratones Desnudos , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab/administración & dosificación , Resultado del Tratamiento
14.
Nat Commun ; 9(1): 1629, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691406

RESUMEN

Human kallikrein peptidase 2 (hK2) is a prostate specific enzyme whose expression is governed by the androgen receptor (AR). AR is the central oncogenic driver of prostate cancer (PCa) and is also a key regulator of DNA repair in cancer. We report an innovative therapeutic strategy that exploits the hormone-DNA repair circuit to enable molecularly-specific alpha particle irradiation of PCa. Alpha-particle irradiation of PCa is prompted by molecularly specific-targeting and internalization of the humanized monoclonal antibody hu11B6 targeting hK2 and further accelerated by inherent DNA-repair that up-regulate hK2 (KLK2) expression in vivo. hu11B6 demonstrates exquisite targeting specificity for KLK2. A single administration of actinium-225 labeled hu11B6 eradicates disease and significantly prolongs survival in animal models. DNA damage arising from alpha particle irradiation induces AR and subsequently KLK2, generating a unique feed-forward mechanism, which increases binding of hu11B6. Imaging data in nonhuman primates support the possibility of utilizing hu11B6 in man.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias de la Próstata/radioterapia , Receptores Androgénicos/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Calicreínas de Tejido/genética , Calicreínas de Tejido/metabolismo
15.
J Labelled Comp Radiopharm ; 61(9): 672-692, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665104

RESUMEN

Over the past 25 years, antibodies have emerged as extraordinarily promising vectors for the delivery of radionuclides to tumors for nuclear imaging. While radioimmunoconjugates often produce very high activity concentrations in target tissues, they also are frequently characterized by elevated activity concentrations in healthy organs as well. The root of this background uptake lies in the complex network of biological interactions between the radioimmunoconjugate and the subject. In this review, we seek to provide an overview of these interactions and thus paint a general picture of the in vivo fate of radioimmunoconjugates. To cover the entire story, we have divided our discussion into 2 parts. First, we will address the path of the entire radioimmunoconjugate as it travels through the body. And second, we will cover the fate of the radionuclide itself, as its course can diverge from the antibody under certain circumstances. Ultimately, our goal is to provide the nuclear imaging field with a resource covering these important-yet often underestimated-pathways.


Asunto(s)
Inmunoconjugados , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Anticuerpos/metabolismo , Humanos , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Radioisótopos , Distribución Tisular
16.
J Labelled Comp Radiopharm ; 61(9): 611-635, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29412489

RESUMEN

Intact antibodies and their truncated counterparts (eg, Fab, scFv fragments) are generally exquisitely specific and selective vectors, enabling recognition of individual cancer-associated molecular phenotypes against a complex and dynamic biomolecular background. Complementary alignment of these advantages with unique properties of radionuclides is a defining paradigm in both radioimmunoimaging and radioimmunotherapy, which remain some of the most adept and promising tools for cancer diagnosis and treatment. This review discusses how translational potency can be maximized through rational selection of antibody-nuclide couples for radioimmunoimaging/therapy in preclinical models.


Asunto(s)
Anticuerpos/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Radiofármacos/uso terapéutico , Animales , Humanos , Neoplasias/inmunología , Radiofármacos/farmacocinética , Distribución Tisular
17.
Mol Pharm ; 15(3): 892-898, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29356543

RESUMEN

The conjugation of antibodies with cytotoxic drugs can alter their in vivo pharmacokinetics. As a result, the careful assessment of the in vivo behavior, and specifically the tumor-targeting properties, of antibody-drug conjugates represents a crucial step in their development. In order to facilitate this process, we have created a methodology that facilitates the dual labeling of an antibody with both a toxin and a radionuclide for positron emission tomography (PET). To minimize the impact of these modifications, this chemoenzymatic approach leverages strain-promoted azide-alkyne click chemistry to graft both cargoes to the heavy chain glycans of the immuoglobulin's Fc domain. As a proof-of-concept, a HER2-targeting trastuzumab immunoconjugate was created bearing both a monomethyl auristatin E (MMAE) toxin as well as the long-lived positron-emitting radiometal 89Zr ( t1/2 ≈ 3.3 days). Both the tumor targeting and therapeutic efficacy of the 89Zr-trastuzumab-MMAE immunoconjugate were validated in vivo using a murine model of HER2-expressing breast cancer. The site-specifically dual-labeled construct enabled the clear visualization of tumor tissue via PET imaging, producing tumoral uptake of ∼70%ID/g. Furthermore, a longitudinal therapy study revealed that the immunoconjugate exerts significant antitumor activity, leading to a >90% reduction in tumor volume over the course of 20 days.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/administración & dosificación , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Antineoplásicos Inmunológicos/farmacocinética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Línea Celular Tumoral , Química Clic , Desarrollo de Medicamentos , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Ratones , Ratones Desnudos , Radiofármacos/administración & dosificación , Radiofármacos/química , Radiofármacos/farmacocinética , Receptor ErbB-2/antagonistas & inhibidores , Distribución Tisular , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Microtomografía por Rayos X/métodos
18.
Cancer Res ; 78(7): 1820-1832, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29363548

RESUMEN

A critical benchmark in the development of antibody-based therapeutics is demonstration of efficacy in preclinical mouse models of human disease, many of which rely on immunodeficient mice. However, relatively little is known about how the biology of various immunodeficient strains impacts the in vivo fate of these drugs. Here we used immunoPET radiotracers prepared from humanized, chimeric, and murine mAbs against four therapeutic oncologic targets to interrogate their biodistribution in four different strains of immunodeficient mice bearing lung, prostate, and ovarian cancer xenografts. The immunodeficiency status of the mouse host as well as both the biological origin and glycosylation of the antibody contributed significantly to the anomalous biodistribution of therapeutic monoclonal antibodies in an Fc receptor-dependent manner. These findings may have important implications for the preclinical evaluation of Fc-containing therapeutics and highlight a clear need for biodistribution studies in the early stages of antibody drug development.Significance: Fc/FcγR-mediated immunobiology of the experimental host is a key determinant to preclinical in vivo tumor targeting and efficacy of therapeutic antibodies. Cancer Res; 78(7); 1820-32. ©2018 AACR.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias Pulmonares/terapia , Neoplasias Ováricas/terapia , Neoplasias de la Próstata/terapia , Receptores Fc/inmunología , Receptores de IgG/inmunología , Trastuzumab/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Trasplante de Neoplasias , Tomografía de Emisión de Positrones/métodos , Inmunodeficiencia Combinada Grave/inmunología , Trasplante Heterólogo
19.
Cancer Res ; 77(14): 3931-3941, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28487384

RESUMEN

The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/biosíntesis , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Inmunoconjugados , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
20.
Am J Nucl Med Mol Imaging ; 6(3): 185-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27508105

RESUMEN

Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of (18)F-labeled scFv-B43.13 ([(18)F]FBz-scFv-B43.13) was studied with PET. [(18)F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...