Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Biol Macromol ; 277(Pt 3): 134194, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097061

RESUMEN

Cytokinin oxidase/dehydrogenase (CKX) regulates cytokinin levels in plants which are vital for plant growth and development. However, there is a paucity of evidence regarding their role in controlling embryo/seed development in pigeonpea. This comprehensive study provides information on the identification and characterization of CKX genes in pigeonpea. A genome-wide analysis identified 18 CKX genes, each with distinct structure, expression patterns, and possible diverse functions. Domain analysis revealed the presence of the sequences including FAD and CK-Binding domain, and subcellular localization analysis showed that almost 50 % of them reside within the nucleus. They were observed to be located unevenly on chromosome numbers 2, 4, 6, 7, and 11 with a majority of them present on the scaffolds. The 8 homologous pairs and various orthologous gene pairs provided further insights into their evolution pattern. Further, SNP/Indels variation in CKX genes and haplotype groups among contrasting genotypes for SNPP (seed number per pod) were analyzed. Spatiotemporal expression analysis revealed the significant expression pattern of CcCKX15, CcCKX17, and CcCKX2 in genotypes carrying low SNPP reiterating their possible role as negative regulators. These genes can be potential targets to undertake seed and biomass improvement in pigeonpea.

2.
Mol Ther Oncol ; 32(2): 200814, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38966037

RESUMEN

Off-the-shelf (OTS) adoptive T cell therapies have many benefits such as immediate availability, improved access and reduced cost, but face the major challenges of graft-vs-host disease (GVHD) and graft rejection, mediated by alloreactive T cells present in the graft and host, respectively. We have developed a platform for OTS T cell therapies by using Epstein-Bar virus (EBV)-specific T cells (EBVSTs) expressing a chimeric antigen receptor (CAR) targeting CD30. Allogeneic EBVSTs have not caused GVHD in several clinical trials, while the CD30.CAR, that is effective for the treatment of lymphoma, can also target alloreactive T cells that upregulate CD30 on activation. Although EBVSTs express high levels of CD30, they were protected from fratricide in cis, by the CD30.CAR. Hence, they could proliferate extensively and maintained function both through their native EBV-specific T cell receptor and the CD30.CAR. The CD30.CAR enabled EBVSTs to persist in co-cultures with naive and primed alloreactive T cells and eliminate activated natural killer cells that can also be alloreactive. In conclusion, we show that CD30.CAR EBVSTs have the potential to be an effective OTS therapy against CD30+ tumors and, if successful, could then be used as a platform to target other tumor antigens.

3.
Mol Genet Genomics ; 299(1): 68, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980531

RESUMEN

The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.


Asunto(s)
Cajanus , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Polen , Polen/genética , Polen/crecimiento & desarrollo , Cajanus/genética , Cajanus/crecimiento & desarrollo , Cajanus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPasas Tipo P/genética , ATPasas Tipo P/metabolismo , Fertilidad/genética , Flores/genética , Flores/crecimiento & desarrollo , Infertilidad Vegetal/genética , Perfilación de la Expresión Génica , Genoma de Planta
4.
Open Biol ; 14(6): 230439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862022

RESUMEN

Volatile low complexity regions (LCRs) are a novel source of adaptive variation, functional diversification and evolutionary novelty. An interplay of selection and mutation governs the composition and length of low complexity regions. High %GC and mutations provide length variability because of mechanisms like replication slippage. Owing to the complex dynamics between selection and mutation, we need a better understanding of their coexistence. Our findings underscore that positively selected sites (PSS) and low complexity regions prefer the terminal regions of genes, co-occurring in most Tetrapoda clades. We observed that positively selected sites within a gene have position-specific roles. Central-positively selected site genes primarily participate in defence responses, whereas terminal-positively selected site genes exhibit non-specific functions. Low complexity region-containing genes in the Tetrapoda clade exhibit a significantly higher %GC and lower ω (dN/dS: non-synonymous substitution rate/synonymous substitution rate) compared with genes without low complexity regions. This lower ω implies that despite providing rapid functional diversity, low complexity region-containing genes are subjected to intense purifying selection. Furthermore, we observe that low complexity regions consistently display ubiquitous prevalence at lower purity levels, but exhibit a preference for specific positions within a gene as the purity of the low complexity region stretch increases, implying a composition-dependent evolutionary role. Our findings collectively contribute to the understanding of how genetic diversity and adaptation are shaped by the interplay of selection and low complexity regions in the Tetrapoda clade.


Asunto(s)
Evolución Molecular , Selección Genética , Animales , Mutación , Filogenia , Proteínas/genética , Proteínas/química , Composición de Base
5.
Front Plant Sci ; 15: 1407789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903424

RESUMEN

Waterlogging is a constant threat to crop productivity and ecological biodiversity. Plants face multiple challenges during waterlogging stress like metabolic reprogramming, hypoxia, nutritional depletion, reduction in gaseous exchange, pH modifications, microbiome alterations and disease promotion all of which threaten plants survival. Due to global warming and climatic change, the occurrence, frequency and severity of flooding has dramatically increased posing a severe threat to food security. Thus, developing innovative crop management technologies is critical for ensuring food security under changing climatic conditions. At present, the top priority among scientists is to find nature-based solutions to tackle abiotic or biotic stressors in sustainable agriculture in order to reduce climate change hazards to the environment. In this regard, utilizing plant beneficial microbiome is one of the viable nature based remedial tool for mitigating abiotic stressors like waterlogging. Beneficial microbiota provides plants multifaceted benefits which improves their growth and stress resilience. Plants recruit unique microbial communities to shield themselves against the deleterious effects of biotic and abiotic stress. In comparison to other stressors, there has been limited studies on how waterlogging stress affects plant microbiome structure and their functional traits. Therefore, it is important to understand and explore how waterlogging alters plant microbiome structure and its implications on plant survival. Here, we discussed the effect of waterlogging stress in plants and its microbiome. We also highlighted how waterlogging stress promotes pathogen occurrence and disease development in plants. Finally, we highlight the knowledge gaps and areas for future research directions on unwiring how waterlogging affects plant microbiome and its functional traits. This will pave the way for identifying resilient microbiota that can be engineered to promote their positive interactions with plants during waterlogging stress.

7.
Plant Cell Rep ; 43(6): 156, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819495

RESUMEN

KEY MESSAGE: In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.


Asunto(s)
Cajanus , Flores , Haplotipos , Polimorfismo de Nucleótido Simple , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Haplotipos/genética , Cajanus/genética , Cajanus/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas/genética , Fenotipo , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Sitios de Carácter Cuantitativo/genética
8.
Blood Adv ; 8(13): 3360-3371, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38640255

RESUMEN

ABSTRACT: The remarkable efficacy of Epstein-Barr virus (EBV)-specific T cells for the treatment of posttransplant lymphomas has not been reproduced for EBV-positive (EBV+) malignancies outside the transplant setting. This is because of, in part, the heterogeneous expression and poor immunogenicity of the viral antigens expressed, namely latent membrane proteins 1 and 2, EBV nuclear antigen 1, and BamHI A rightward reading frame 1 (type-2 [T2] latency). However, EBV lytic cycle proteins are also expressed in certain EBV+ malignancies and, because several EBV lytic cycle proteins are abundantly expressed, have oncogenic activity, and likely contribute to malignancy, we sought and identified viral lytic-cycle transcripts in EBV+ Hodgkin lymphoma biopsies. This provided the rationale for broadening the target antigen-specific repertoire of EBV-specific T cells (EBVSTs) for therapy. We stimulated, peripheral blood mononuclear cells from healthy donors and patients with EBV+ lymphoma with both lytic and latent cycle proteins to produce broad repertoire (BR) EBVSTs. Compared with T2 antigen-specific EBVSTs, BR-EBVSTs more rapidly cleared autologous EBV+ tumors in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice and produced higher levels of proinflammatory cytokines that should reactivate the immunosuppressive tumor microenvironment leading to epitope spreading. Our results confirm that lytic cycle antigens are clinically relevant targets for EBV+ lymphoma and underpin the rationale for integrating BR-EBVSTs as a therapeutic approach for relapsed/refractory EBV+ lymphoma (www.clinicaltrials.gov identifiers: #NCT01555892 and #NCT04664179), as well as for other EBV-associated malignancies.


Asunto(s)
Antígenos Virales , Herpesvirus Humano 4 , Linfocitos T , Humanos , Herpesvirus Humano 4/inmunología , Animales , Antígenos Virales/inmunología , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Linfoma/inmunología , Linfoma/terapia , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/terapia , Enfermedad de Hodgkin/virología , Latencia del Virus
9.
Res Sq ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38659815

RESUMEN

We report long-term outcomes up to 18 years of a clinical trial treating children with neuroblastoma with EBV-specific T lymphocytes and CD3-activated T cells - each expressing a first-generation chimeric antigen receptor targeting GD2 with barcoded transgenes to allow tracking of each population. Of 11 patients with active disease at infusion, three patients achieved a complete response that was sustained in 2, one for 8 years until lost to follow up and one for 18+ years. Of eight patients with a history of relapse or at high risk of recurrence, five are disease-free at their last follow-up between 10-14 years post-infusion. Intermittent low levels of transgene were detected during the follow up period with significantly greater persistence in those who were long-term survivors. In conclusion, patients with relapsed/refractory neuroblastoma achieved long-term disease control after receiving GD2 CAR-T cell therapy including one patient now in remission of relapsed disease for >18 years.

10.
Genes Genomics ; 46(1): 65-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985548

RESUMEN

BACKGROUND: Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE: Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS: The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS: 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION: In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.


Asunto(s)
Cajanus , Transcriptoma , Cajanus/genética , Sequías , Perfilación de la Expresión Génica , Genotipo
11.
Fish Physiol Biochem ; 49(6): 1489-1509, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966680

RESUMEN

In Heteropneustes fossilis, kisspeptins (Kiss) and nonapeptides (NPs; vasotocin, Vt; isotocin, Itb; Val8-isotocin, Ita) stimulate the hypothalamus-pituitary-gonadal (HPG) axis, and estrogen feedback modulates the expression of these systems. In this study, functional interactions among these regulatory systems were demonstrated in the brain and ovary at the mRNA expression level. Human KISS1 (hKISS1) and H. fossilis Kiss2 (HfKiss2) produced biphasic effects on brain and ovarian vt, itb and ita expression at 24 h post injection: low and median doses produced inhibition, no change or mild stimulation, and the highest dose consistently stimulated the mRNA levels. The Kiss peptides produced an upregulation of NP mRNA expression at 24 h incubation of brain and ovarian slices by increasing the concentration of hKISS1 and HfKiss2. The kiss peptides stimulated brain cyp19a1b and ovary cyp19a1a expression, both in vivo and in vitro. Peptide234, a Kiss1 receptor antagonist, inhibited basal mRNA expression of the NPs, cyp19a1b and cyp19a1a, which was prevented by the Kiss peptides, both in vivo and in vitro. In all the experiments, HfKiss2 was more effective than hKISS1 in modulating mRNA expression. The results suggest that the NP and E2 systems are functional targets of Kiss peptides and interact with each other.


Asunto(s)
Bagres , Ovario , Femenino , Humanos , Animales , Ovario/metabolismo , Kisspeptinas/genética , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Bagres/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Encéfalo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958791

RESUMEN

The efficacy of therapeutic T-cells is limited by a lack of positive signals and excess inhibitory signaling in tumor microenvironments. We previously showed that a constitutively active IL7 receptor (C7R) enhanced the persistence, expansion, and anti-tumor activity of T-cells expressing chimeric antigen receptors (CARs), and C7R-modified GD2.CAR T-cells are currently undergoing clinical trials. To determine if the C7R could also enhance the activity of T-cells recognizing tumors via their native T-cell receptors (TCRs), we evaluated its effects in Epstein-Barr virus (EBV)-specific T-cells (EBVSTs) that have produced clinical benefits in patients with EBV-associated malignancies. EBVSTs were generated by stimulation of peripheral blood T-cells with overlapping peptide libraries spanning the EBV lymphoma antigens, LMP1, LMP2, and EBNA 1, followed by retroviral vector transduction to express the C7R. The C7R increased STAT5 signaling in EBVSTs and enhanced their expansion over 30 days of culture in the presence or absence of exogenous cytokines. C7R-EBVSTs maintained EBV antigen specificity but were dependent on TCR stimulation for continued expansion. C7R-EBVSTs produced more rapid lymphoma control in a murine xenograft model than unmodified EBVSTs and persisted for longer. The findings have led to a clinical trial, evaluating C7R-EBVSTs for the treatment of refractory or relapsed EBV-positive lymphoma (NCT04664179).


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Humanos , Animales , Ratones , Herpesvirus Humano 4 , Interleucina-7 , Linfocitos T , Receptores de Antígenos de Linfocitos T , Citocinas , Microambiente Tumoral
13.
3 Biotech ; 13(11): 365, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840876

RESUMEN

To unravel the plastid genome diversity among the cultivated groups of the pigeonpea germplasm, we characterized the SNP occurrence and distribution of 142 pigeonpea mini-core collections based on their reference-based assembly of the chloroplast genome. A total of 8921 SNPs were found, which were again filtered and finally 3871 non-synonymous SNPs were detected and used for diversity estimates. These 3871 SNPs were classified into 12 groups and were present in only 44 of the 125 genes, demonstrating the presence of a precise mechanism for maintaining the whole chloroplast genome throughout evolution. The Acetyl-CoA carboxylase D gene possesses the maximum number of SNPs (12.29%), but the Adenosine Tri-Phosphate synthatase cluster genes (atpA, atpB, atpE, atpF, atpH, and atpI) altogether bear 43.34% of the SNPs making them most diverse. Various diversity estimates, such as the number of effective alleles (1.013), Watterson's estimate (0.19), Tajima's D ( - 3.15), Shannon's information index (0.036), suggest the presence of less diversity in the cultivated gene pool of chloroplast genomes. The genetic relatedness estimates based on pairwise correlations were also in congruence with these diversity descriptors and indicate the prevalence of rare alleles in the accessions. Interestingly, no stratification was observed either through STRUCTURE, PCoA, or phylogenetic analysis, indicating the common origin of the chloroplast in all the accessions used, irrespective of their geographical distribution. Further 6194 Cleaved Amplified Polymorphic Sequences (CAPS) markers for 531 SNPs were developed and validated in a selected set of germplasm. Based on these results, we inferred that all of the cultivated gene pools of pigeonpea have a common origin for the chloroplast genome and they possess less diversity in protein-coding regions, indicating a stable and evolved plastid genome. At the same time, all diversity analysis indicates the occurrence of rare alleles, suggesting the suitability of the mini-core collection in future pigeonpea improvement programs. In addition, the development of chloroplast genome-based CAPS markers would have utility in pigeonpea breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03785-8.

14.
3 Biotech ; 13(11): 363, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840881

RESUMEN

The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03782-x.

15.
Int J Biol Macromol ; 253(Pt 4): 126833, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37709218

RESUMEN

Auxin Response Factors (ARF) are a family of transcription factors that mediate auxin signalling and regulate multiple biological processes. Their crucial role in increasing plant biomass/yield influenced this study, where a systematic analysis of ARF gene family was carried out to identify the key proteins controlling embryo/seed developmental pathways in pigeonpea. A genome-wide scan revealed the presence of 12 ARF genes in pigeonpea, distributed across the chromosomes 1, 3, 4, 8 and 11. Domain analysis of ARF proteins showed the presence of B3 DNA binding, AUX response, and IAA domains. Majority of them are of nuclear origin, and do not exhibit the level of genomic expansion as observed in Glycine max (51 members). The duplication events seem to range from 31.6 to 42.3 million years ago (mya). Promoter analysis revealed the presence of multiple cis-acting elements related to stress responses, hormone signalling and other development processes. The expression atlas data highlighted the expression of CcARF8 in hypocotyl, bud and flower whereas, CcARF7 expression was significantly high in pod. The real-time expression of CcARF2, CcARF3 and CcARF18 was highest in genotypes with high seed number indicating their key role in regulating embryo development and determining seed set in pigeonpea.


Asunto(s)
Ácidos Indolacéticos , Familia de Multigenes , Ácidos Indolacéticos/metabolismo , Expresión Génica , Semillas , Evolución Molecular , Proteínas de Plantas/química , Filogenia , Regulación de la Expresión Génica de las Plantas
16.
Fish Physiol Biochem ; 49(5): 911-923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548828

RESUMEN

The two gonadotropins, FSH and LH, stimulate growth and development of the gonads through gonadal biosynthesis of steroid hormones and growth factors. To date, cDNA sequences encoding gonadotropin subunits have been isolated and characterized from a large number of fish species. Recently, we successfully cloned and characterized gonadotropins (LHß, FSHß, and GPα) from the pituitary glands of the catfish, Heteropneustes fossilis. In the present study, we describe herein the production of recombinant stinging catfish, H. fossilis (hf) FSH (rhfFSH) and LH (rhfLH) using the methylotrophic yeast P. pastoris expression system. We further explored the hypothesis that the recombinant gonadotropins can modulate the hypothalamus-pituitary-ovarian (HPO) axis genes (avt, it, gnrh2, kiss2, and cyp19a1a) and regulate their transcriptional profile and steroid levels in relation to their annual developmental stage during preparatory and pre-spawning phases under in-vitro conditions. We found that the different concentrations of recombinant rhfFSH and rhfLH significantly stimulated E2 levels in the preparatory and prespawning season, and also upregulated gonadal aromatase gene expression in a dose dependent manner. Our results demonstrate that the yeast expression system produced biologically active recombinant catfish gonadotropins, enabling the study of their function in the catfish.


Asunto(s)
Bagres , Animales , Bagres/fisiología , Saccharomyces cerevisiae/metabolismo , Gonadotropinas/genética , Gonadotropinas/farmacología , Gonadotropinas/metabolismo , Esteroides , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Hormona Luteinizante de Subunidad beta/metabolismo
17.
Sci Rep ; 13(1): 9941, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336893

RESUMEN

Cluster bean (Cyamopsis tetragonoloba (L.) Taub 2n = 14, is commonly known as Guar. Apart from being a vegetable crop, it is an abundant source of a natural hetero-polysaccharide called guar gum or galactomannan. Here, we are reporting a chromosome-scale reference genome assembly of a popular cluster bean cultivar RGC-936, by combining sequencing data from Illumina, 10X Genomics, Oxford Nanopore technologies. An initial assembly of 1580 scaffolds with an N50 value of 7.12 Mb was generated and these scaffolds were anchored to a high density SNP linkage map. Finally, a genome assembly of 550.31 Mb (94% of the estimated genome size of ~ 580 Mb (through flow cytometry) with 58 scaffolds was obtained, including 7 super scaffolds with a very high N50 value of 78.27 Mb. Phylogenetic analysis using single copy orthologs among 12 angiosperms showed that cluster bean shared a common ancestor with other legumes 80.6 MYA. No evidence of recent whole genome duplication event in cluster bean was found in our analysis. Further comparative transcriptomics analyses revealed pod-specific up-regulation of genes encoding enzymes involved in galactomannan biosynthesis. The high-quality chromosome-scale cluster bean genome assembly will facilitate understanding of the molecular basis of galactomannan biosynthesis and aid in genomics-assisted improvement of cluster bean.


Asunto(s)
Cyamopsis , Cyamopsis/genética , Filogenia , Genoma , Verduras/genética , Cromosomas
18.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37072346

RESUMEN

BACKGROUND: The wider application of T cells targeting viral tumor-antigens via their native receptors is hampered by the failure to expand potent tumor-specific T cells from patients. Here, we examine reasons for and solutions to this failure, taking as our model the preparation of Epstein-Barr virus (EBV)-specific T cells (EBVSTs) for the treatment of EBV-positive lymphoma. EBVSTs could not be manufactured from almost one-third of patients, either because they failed to expand, or they expanded, but lacked EBV specificity. We identified an underlying cause of this problem and established a clinically feasible approach to overcome it. METHODS: CD45RO+CD45RA- memory compartment residing antigen-specific T cells were enriched by depleting CD45RA positive (+) peripheral blood mononuclear cells (PBMCs) that include naïve T cells, among other subsets, prior to EBV antigen stimulation. We then compared the phenotype, specificity, function and T-cell receptor (TCR) Vß repertoire of EBVSTs expanded from unfractionated whole (W)-PBMCs and CD45RA-depleted (RAD)-PBMCs on day 16. To identify the CD45RA component that inhibited EBVST outgrowth, isolated CD45RA+ subsets were added back to RAD-PBMCs followed by expansion and characterization. The in vivo potency of W-EBVSTs and RAD-EBVSTs was compared in a murine xenograft model of autologous EBV+ lymphoma. RESULTS: Depletion of CD45RA+ PBMCs before antigen stimulation increased EBVST expansion, antigen-specificity and potency in vitro and in vivo. TCR sequencing revealed a selective outgrowth in RAD-EBVSTs of clonotypes that expanded poorly in W-EBVSTs. Inhibition of antigen-stimulated T cells by CD45RA+ PBMCs could be reproduced only by the naïve T-cell fraction, while CD45RA+ regulatory T cells, natural killer cells, stem cell memory and effector memory subsets lacked inhibitory activity. Crucially, CD45RA depletion of PBMCs from patients with lymphoma enabled the outgrowth of EBVSTs that failed to expand from W-PBMCs. This enhanced specificity extended to T cells specific for other viruses. CONCLUSION: Our findings suggest that naïve T cells inhibit the outgrowth of antigen-stimulated memory T cells, highlighting the profound effects of intra-T-cell subset interactions. Having overcome our inability to generate EBVSTs from many patients with lymphoma, we have introduced CD45RA depletion into three clinical trials: NCT01555892 and NCT04288726 using autologous and allogeneic EBVSTs to treat lymphoma and NCT04013802 using multivirus-specific T cells to treat viral infections after hematopoietic stem cell transplantation.


Asunto(s)
Herpesvirus Humano 4 , Células de Memoria Inmunológica , Inmunoterapia , Linfoma , Linfocitos T , Linfocitos T/inmunología , Humanos , Linfoma/inmunología , Linfoma/terapia , Antígenos Comunes de Leucocito , Células de Memoria Inmunológica/inmunología , Leucocitos Mononucleares/inmunología , Células Asesinas Naturales/inmunología , Inmunoterapia/métodos , Inmunofenotipificación , Femenino , Animales , Ratones , Xenoinjertos , Trasplante de Neoplasias
19.
Plants (Basel) ; 12(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050128

RESUMEN

Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.

20.
Genes Genomics ; 45(6): 783-811, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115379

RESUMEN

BACKGROUND: Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE: Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS: We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS: We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION: Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.


Asunto(s)
Cajanus , Infertilidad , MicroARNs , ARN Largo no Codificante , RNA-Seq , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Cajanus/genética , Cajanus/metabolismo , Fertilidad/genética , MicroARNs/genética , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA