Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 233: 116478, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348633

RESUMEN

This study deals with the fabrication of metal ion (M = Co+2, Ni+2, and Cu+2) doped- Bi2O3 photocatalysts by solution combustion method. All the synthesized materials were characterized and analysed with the help of XRD, FESEM, EDX, HRTEM, UVDRS, Zeta potential, PL, and LCMS techniques for the structural, morphological, surface charge, optical and degradation pathways characteristics. Synthesized compounds were used for the decontamination (adsorption and degradation) of two organic pollutants namely Rhodamine B and Triclopyr. Adsorption aspects of the pollutants were studied in terms of different isotherm, kinetic and thermodynamic models. Adsorption phenomenon was best fitted with the Freundlich (R2 = 0.992) and Langmuir isotherm (R2 = 0.999) models along with pseudo second order model of kinetics for RhB and TC, respectively. Moreover, the thermodynamic parameters indicated exothermic and endothermic adsorption (ΔH ° (-7.19 kJ/mol) for RhB) and (ΔH ° (52.335 kJ/mol) for TC), respectively. Evaluated negative values of ΔG ° indicated spontaneous adsorption with most favourable at 298 K and 318 K for both the pollutants (RhB and TC) respectively. Modification with metal ions significantly improved the removal efficiency of pure Bi2O3 photocatalyst and followed the trend Co+2/Bi2O3 > Ni+2/Bi2O3 > Cu+2/Bi2O3 > Bi2O3. DFT calculations demonstrate that amongst the doped materials, only Co+2/Bi2O3 is characterized by an indirect band gap; which exhibited efficacious photocatalytic activity. Besides, the highest degradation efficiency was obtained in the case of Co+2/Bi2O3 (2 mol %); being 99.80% for RhB in 30 min and 98.50% for TC in 60 min, respectively. The doped nanostructures lead to higher absorption of visible light and more separation of light-induced charged carriers. Effect of pH of the reaction medium and role of reactive oxygen species was also examined. Finally, a probable mechanism of charge transfer and degradation of the pollutants was also presented.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Fotólisis , Termodinámica , Contaminantes Químicos del Agua/análisis
2.
Indian J Microbiol ; 61(4): 487-496, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34744204

RESUMEN

Titanium dioxide (TiO2) is widely characterized for its application in clinical diagnostics, therapeutics, cosmetics, nutrition, and environment management. Despite enormous potential, its dependence on ultraviolet (UV) light for photocatalytic activity limits its commercialization. Accordingly in the present study, a photo catalytically superior ternary complex of TiO2 with Cadmium sulfide/Zinc sulfide (CdS/ZnS) has been synthesized, as well as, characterized for photo-induced antimicrobial activity. The band gap of crystalline TiO2/CdS/ZnS nanocomposite has been reduced (2.26 eV) and nanocomposite has shown the optimal photo-activation at 590 nm. TiO2 nanocomposite has significant bactericidal activity in visible light (P < 0.01). Exposure of the TiO2 nanocomposite affected the cellular metabolism by altering the 1681 metabolic features (P < 0.001) culminating in poor cellular survivability. Additionally, photo-induced reactive oxygen species generation through nanocomposite disrupts the microbial cellular structure. The present study synthesized photocatalytic nanocomposite as well as unveiled the holistic cellular effect of theTiO2/CdS/ZnS nanocomposite. Additionally, the present study also indicated the potential application of TiO2/CdS/ZnS nanocomposite for sustainable environment management, therapeutics, and various industries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00973-z.

3.
Biometals ; 31(2): 147-159, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29392447

RESUMEN

TiO2 is a well-known material and has remarkable physical, chemical and biocompatible properties which have made it a suitable material in the biological world. The development of new TiO2-based materials is strongly required to achieve desired properties and applications. A large number of TiO2 composites have been synthesized and applied in various fields. The present review reports the utility of TiO2 and its composites in biosensing, in Photodynamic Therapy, as an antimicrobial agent and as a nanodrug carrier. The aim of this review is to discuss the biological application of the TiO2 based materials and some recent advancement in TiO2 to enhance its application in the biological world.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Portadores de Fármacos/uso terapéutico , Titanio/uso terapéutico , Antiinfecciosos/uso terapéutico , Materiales Biocompatibles/química , Técnicas Biosensibles/tendencias , Portadores de Fármacos/química , Humanos , Nanopartículas/uso terapéutico , Fotoquimioterapia/tendencias , Titanio/química
4.
J Environ Qual ; 42(5): 1555-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24216433

RESUMEN

Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide has resulted in greater use of MITC generators. To understand the efficacy of MITC, it is necessary to assess its generation and disappearance kinetics when Met-Na is applied to soil. This study evaluated the movement of water and distribution and dissipation of MITC in soil after application of Met-Na through surface drip irrigation systems. The effects of varying water application volume (25, 50, and 75 mm) and rate (1.9, 5.0, and 7.5 L h m) were evaluated in a sandy loam soil. Good fumigant distribution within the sandy loam soil was observed under medium water application amount (50 mm) with slow to intermediate drip application rates (1.9-5.0 L h m). Low water application amount (25 mm) or high application rate (7.5 L h m) did not provide adequate MITC distribution throughout the soil bed width and rooting depth. Dissipation patterns of MITC in soil in all water application amounts and rates followed first-order kinetics, with a rate constant of 0.025 ± 0.004 h and a half-life of 27 ± 3 h. Simulated water distribution through the soil profile using HYDRUS 2D/3D fitted measured field data well, and the model accurately simulated MITC fumigant distribution in the soil.


Asunto(s)
Fumigación , Suelo , Agricultura , Plaguicidas , Contaminantes del Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...