Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biochem Mol Toxicol ; 38(6): e23735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773908

RESUMEN

Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-ß-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.


Asunto(s)
Isoflavonas , Neoplasias , Isoflavonas/farmacología , Isoflavonas/química , Isoflavonas/uso terapéutico , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Glucósidos/farmacología , Glucósidos/uso terapéutico , Glucósidos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Glicósidos/farmacología , Glicósidos/uso terapéutico , Glicósidos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 41-57, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566307

RESUMEN

Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.


Asunto(s)
Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Distribución Tisular , Glioma/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2055-2065, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37837475

RESUMEN

Recent years have witnessed the rise of more recent pandemic outbreaks including COVID-19 and monkeypox. A multinational monkeypox outbreak creates a complex situation that necessitates countermeasures to the existing quo. The first incidence of monkeypox was documented in the 1970s, and further outbreaks led to a public health emergency of international concern. Yet as of right now, neither vaccines nor medicines are certain to treat monkeypox. Even the inability of conducting human clinical trials has prevented thousands of patients from receiving effective disease management. The current state of the disease's understanding, the treatment options available, financial resources, and lastly international policies to control an epidemic state are the major obstacles to controlling epidemics. The current review focuses on the epidemiology of monkeypox, scientific ideas, and available treatments, including potential monkeypox therapeutic methods. As a result, a thorough understanding of monkeypox literature will facilitate in the development of new therapeutic medications for the prevention and treatment of monkeypox.


Asunto(s)
Citosina/análogos & derivados , Mpox , Organofosfonatos , Humanos , Cidofovir , Benzamidas
4.
J Cancer Res Clin Oncol ; 149(19): 17709-17726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919474

RESUMEN

BACKGROUND: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Meliteno/farmacología , Meliteno/química , Meliteno/genética , Neoplasias/patología , Antineoplásicos/uso terapéutico , Técnicas de Cultivo de Célula , Modelos Animales , Proliferación Celular
5.
ACS Omega ; 8(35): 31648-31660, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37692249

RESUMEN

A novel benzopyran-based platinum (II)-3-hydroxy-2-tolyl-4H-chromen-4-one (HToC) complex has been prepared and studied by UV-visible spectrophotometry. The study is based on the colored complexation between Pt(II) and HToC in the pH range of 8.92-9.21, resulting in the formation of a stable binary yellow complex exhibiting λmax at 509-525 nm. The formed complex maintains linearity between 0.0 and 1.8 µg Pt(II) mL-1. The well-known qualitative analytical methods, including Job's method of continuous variations and the mole ratio approach, have both proven that the stoichiometry of the complex is 1:2 [Pt(II)/HToC]. Hence, the analytical results suggest that the formed platinum complex exhibits a square planar geometry. The values of various attributes corresponding to spectrophotometric studies and statistical calculations, such as the molar extinction coefficient (6.790 × 104 L mol-1 cm-1), Sandell's sensitivity (0.0029 µg Pt(II) cm-2), standard deviation (± 0.0011), RSD (0.317%), limit of detection (0.0147 µg mL-1) and correlation coefficient (0.9999), show that the performed study satisfies all of the criteria for good sensitivity, versatility, and cost-effectiveness. In order to have an apprehension of the molecular geometry and other structural specifics of the complex, DFT studies have been carried out. The in vitro anticancer potential of the ligand and its platinum complex in the human breast cancer cell line (T-27D), as determined by the MTT assay, reveals that the complex has better antiproliferative potential than the ligand. The antimicrobial potential of the complex has been successfully tested against both Gram-positive and -negative bacteria. Antioxidant capacity results suggest the better radical scavenging capacity of the complex than that of the ligand.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 1867-1878, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37010571

RESUMEN

The Cucurbitaceae family produces a class of secondary metabolites known as cucurbitacins. The eight cucurbitacin subunits are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R with the most significant anticancer activity. They are reported to inhibit cell proliferation, invasion, and migration; induce apoptosis; and encourage cell cycle arrest, as some of their modes of action. The JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which are essential for the survival and apoptosis of cancer cells, have also been shown to be suppressed by cucurbitacins. The goal of the current study is to summarize potential molecular targets that cucurbitacins could inhibit in order to suppress various malignant processes. The review is noteworthy since it presents all putative molecular targets for cucurbitacins in cancer on a single podium.


Asunto(s)
Neoplasias , Triterpenos , Humanos , Cucurbitacinas/farmacología , Cucurbitacinas/uso terapéutico , Fosfatidilinositol 3-Quinasas , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Apoptosis , Proliferación Celular
8.
Arch Toxicol ; 97(1): 103-120, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36443493

RESUMEN

ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carcinogénesis , Estrés Oxidativo , Apoptosis , Transformación Celular Neoplásica
9.
Anticancer Agents Med Chem ; 23(4): 450-460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35638274

RESUMEN

AIMS: To find out the role of secretory phospholipase A2 (sPLA2) isozymes as potential targets in tobacco condensate-induced colon damage. BACKGROUND: The effects of cigarette smoke condensate (CSC) and the molecular mechanisms involved in the regulation of phospholipase A2 (PLA2) and its isozymes in colon cells, which are still unclear and emerging, are studied. OBJECTIVES: The study aimed to check the effect of CSC on cell viability and reactive oxygen species (ROS) and superoxide. Also, the effect of CSC on gene expression of different secretory phospholipase A2 (sPLA2) was evaluated. Moreover, the impact of inhibition of sPLA2 on various cell properties i.e. cell viability, cell proliferation, membrane damage and free radicals' generation is also studied. METHODS: CSC-induced changes were evaluated in cell viability by MTT assay, followed by the evaluation of membrane modulation by flow cytometry, free radical generation by fluorescent dyes, PLA2 isoforms gene expression patterns and their suppression by small interfering RNA (siRNA) studied in HCT-15 male and HT-29 female colon cells. RESULTS: Our results demonstrate that HCT-15 and HT-29 cells treated with CSC significantly reduced the cell viability by 50% within 48 h and significantly enhanced the total reactive oxygen species (ROS) by 2 to 10-fold, and mitochondrial ROS (mtROS) and superoxide radicals (SOR) by 2-fold each. Treatment with CSC significantly unregulated secretory phospholipase A2 (sPLA2) IID group and down-regulated IB and cytosolic phospholipase (cPLA2) IVA groups in HCT-15 cells without affecting them in HT-29 cells. Silencing the sPLA2 IID group results in an increase in cell viability and a decrease in ROS. Silencing the PLA2 IVA gene in the HCT-15 cells showed a reduced expression which had no impact on the CSC-induced cell proliferation, membrane damage and free radicals (ROS, mtROS, and SOR) generation. CONCLUSION: Therefore, identifying cell-specific sPLA2 isozymes seems to play a key role in controlling the ROSinduced damage by CSC and helps develop specific therapeutic strategies.


Asunto(s)
Nicotiana , Fosfolipasas A2 Secretoras , Humanos , Femenino , Masculino , Especies Reactivas de Oxígeno , Isoenzimas/genética , Isoenzimas/metabolismo , Superóxidos , Fosfolipasas A2 Secretoras/genética
10.
Pharmacol Res ; 186: 106523, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36377125

RESUMEN

Despite advanced clinical and translational oncology research, mortality rates are still increasing worldwide. Recently, a class of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been well investigated in regulating biological, molecular, and cellular signaling pathways. This review article provided the current research progress on how miRNAs, lncRNAs, and circRNAs regulate Hedgehog (Hh) and Hippo signaling pathways in various cancers. These ncRNAs target both pathways' key downstream molecules and may be used for targeted cancer treatment. Moreover, Hh and Hippo signaling pathways crosstalked with each other through Gli1 of Hh pathways and YAP1/TEAD molecules of Hippo pathways during cancer progression. Additionally, Hh and Hippo signaling pathways regulate resistance against the chemo, radio, and immune therapies for several types of cancer via inducing GLI and YAP/TAZ proteins level. Therefore, to improve the treatment regime, we presented the role of various prominent phytochemicals such as curcumin, resveratrol, genistein, quercetin, paclitaxel, and silibinin in regulating lncRNAs, miRNAs, circRNA through Hedgehog and Hippo signaling pathways' constituents in cancers. We believe that knowledge obtained from this review may help make new drugs for cancer treatment in the future.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Circular , Proteínas Hedgehog , Vía de Señalización Hippo , ARN no Traducido/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358791

RESUMEN

Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight.

12.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364478

RESUMEN

Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.


Asunto(s)
Neoplasias , Fenol , Humanos , Fenol/farmacología , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/uso terapéutico , Transducción de Señal , Neoplasias/metabolismo , Carcinogénesis
13.
Front Mol Neurosci ; 15: 921908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875669

RESUMEN

Mitochondria provide neurons not only energy as ATP to keep them growing, proliferating and developing, but they also control apoptosis. Due to their high bioenergetic demand, neurons which are highly specific terminally differentiated cells, essentially depend on mitochondria. Defective mitochondrial function is thus related to numerous age-linked neurodegenerative ailments like Alzheimer's disease (AD), in which the build-up of impaired and malfunctioning mitochondria has been identified as a primary sign, paying to disease development. Mitophagy, selective autophagy, is a key mitochondrial quality control system that helps neurons to stay healthy and functional by removing undesired and damaged mitochondria. Dysfunctional mitochondria and dysregulated mitophagy have been closely associated with the onset of ADs. Various proteins associated with mitophagy were found to be altered in AD. Therapeutic strategies focusing on the restoration of mitophagy capabilities could be utilized to strike the development of AD pathogenesis. We summarize the mechanism and role of mitophagy in the onset and advancement of AD, in the quality control mechanism of mitochondria, the consequences of dysfunctional mitophagy in AD, and potential therapeutic approaches involving mitophagy modulation in AD. To develop new therapeutic methods, a better knowledge of the function of mitophagy in the pathophysiology of AD is required.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35362379

RESUMEN

The gut microbiota that comprises over 100 trillion microorganisms with a weight of about 1-2 kg is regarded as one of the most crucial players in the regulation of the metabolic health of host organisms. In recent years, the incidence of type 2 diabetes mellitus (T2DM), characterized by high levels of sugar in the blood, has been exponentially increasing due to obesity and other lifestyle risk factors. It was shown that dysbiosis, change in the overall composition, and diversity of gut microflora can result in T2DM. Conversely, the microbial composition can also influence the epigenetics of the host organism (DNA methylation as well as histone modifications), which might have a potential effect on the metabolic health of the individual. Another mechanism of gut microbiota in the development of T2DM is through the involvement of nucleotide-binding oligomerization domain, Leucine-rich Repeat, and Pyrin domain containing 3 (NLRP3) inflammasome, a part of the innate immune system. NLRP3 inflammasome produces inflammatory cytokines, promoting the secretion of microbial antigens in the intestinal epithelium. Therefore, it is important to understand the possible connecting link between gut microbiota and T2DM that might help in the modulation of gut microflora to better understand the disease. In this review, the role of gut microbiota in the pathogenesis of T2DM will be discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Inflamasomas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microbioma Gastrointestinal/fisiología , Epigénesis Genética
15.
Curr Dermatol Rep ; 11(2): 110-119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35313686

RESUMEN

Purpose of Review: Over a period of time, sporotrichosis has arisen as one of the leading fungal infections not only in animals but humans also. Several possible reasons that contribute to its emergence include change in epidemiology and distribution, evolutionary changes in taxonomy, and several outbreaks. World Health Organization has identified sporotrichosis as one of the major neglected tropical diseases (NTD) for 2021-2030 under the category of fungal NTDs. Several factors are contributing to increases in morbidity due to sporotrichosis such as delayed diagnosis and unavailability of appropriate antifungal therapy, which lead to redundant and inappropriate treatment with associate costs and adverse effects. Recent Findings: The potassium iodide is the first line of treatment for cutaneous forms while amphotericin B is used for the most severe cases of the disease. The limited medication arsenal, side effects, failure of therapy, and the advent of drug-resistant isolates emphasize the need for the development of new therapeutic options. Several studies are focusing on the development of the new drugs which either used alone or in combination with already available treatment. Along with this, several new antigens have been identified as possible targets for its vaccine development. Summary: The early diagnosis is required for selecting the best possible treatment strategy. The researchers should focus on developing new diagnostic methods and treatment options as well as vaccine development for the better management of sporotrichosis. In the long run, patient education for preventative features to reduce risk and counselling for prolonged therapy will be beneficial.

17.
Mol Cell Biochem ; 477(3): 833-847, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35064412

RESUMEN

Cardiovascular diseases (CVDs) comprises disorders of blood vessels and heart. Multiple cells in the heart suggests that hetero-cellular communication, which is an important aspect in heart functioning and there is a need to elucidate the way in which this inter-cellular communication occurs. Now a days, exosomal research has gained much attention. Exosomes, nano-shuttles, are EVs with diameters ranging from 40 to 160 nm (average 100 nm), secreted by body cells. These vesicles act as cell-to-cell communicators and are carriers of important biomolecules such as RNAs, miRNAs, Proteins and lipids. Exosomes can change the gene expression of the recipient cells, thereby, changes the cellular characteristics. Exosomes have known to play an essential role in protection as well as progression of various cardiovascular diseases. In the present review, role of exosomes in various CVDs have been discussed.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Comunicación Celular , Exosomas/metabolismo , MicroARNs/sangre , Humanos
18.
Life Sci ; 284: 119901, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453941

RESUMEN

COVID-19 is a serious viral infection that struck the world in December 2019 starting from Wuhan in China, spreading subsequently to all over the world. The disease has baffled scientists and doctors worldwide in terms of its presentation, behaviour, and treatment options till now. A low mortality rate is the only relief we get so far from COVID-19 in terms of numbers. Treatment options have gradually streamlined to steroids and very few FDA approved antiviral as well as plasma therapy and supportive treatment. Monoclonal antibodies are used to tide over any impending cytokine storm but are not equally effective in all patients. Ventilation support is invariably required for moderate to severe disease varying from a simple High Flow non-rebreathing mask to BiPAP (Bilevel Positive Airway Pressure) and HFNO (High-Flow Nasal Oxygen) extending to full-fledge ventilation via a Mechanical Ventilator. Because of the non-availability of satisfactory treatment so far, many researchers from different biomedical fields are looking for alternative therapeutic strategies to manage the pandemic. One such therapeutic approach showing a ray of hope to combat COVID-19 infection is Mesenchymal stem cell therapy. Mesenchymal cells have immunomodulatory, anti-inflammatory as well as regenerative properties and various preliminary studies have shown that MSCs can reverse the lung damage and overcome the cytokine storm incited by COVID-19 infection. Also, it has improved the recovery rate of critically ill patients on mechanical ventilation. In this review, we will discuss the possibility and relevance of MSCs in COVID-19 treatment and preview of various MSCs clinical trials.


Asunto(s)
COVID-19/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , SARS-CoV-2/fisiología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Ensayos Clínicos como Asunto , Humanos , Inmunidad
19.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34238779

RESUMEN

Deletion of specific genes present in the long arm of Y chromosome has been identified as the most common genetic cause of defective spermatogenesis. Studies have shown that frequency of Y chromosome microdeletion varies in different geographical location and is related to genetic and environmental influence preponderance. Therefore, the present study was carried out to identify the frequency of Y chromosome microdeletion in the northern region of India and to define subgroup of infertile patients who are critically under more risk of having microdeletion. A total of 292 north Indian infertile males with nonobstructive azoospermia and oligozoospermia were selected for screening the Y chromosome microdeletion. Healthy fertile males (n=100) were also enrolled as control subjects. Frequency of Y chromosome microdeletion in north Indian infertile males was found to be about 8.5%, with azoospermia factor (AZFc) region as the most susceptible region for microdeletion. Comparatively microdeletion is more common in patients with nonobstructive azoospermia than oligozoospermia (9.2% versus 7.1%). Statistical analysis also revealed that patients with hormonal FSH level between 20 and 40 mIU/mL have more chances of harbouring microdeletion. Hence, the present study highlights the importance of screening AZFc region among infertile patients with very high serum FSH value.


Asunto(s)
Infertilidad Masculina/genética , Oligospermia/genética , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Espermatogénesis/genética , Adulto , Azoospermia/epidemiología , Azoospermia/genética , Azoospermia/patología , Deleción Cromosómica , Cromosomas Humanos Y/genética , Humanos , India/epidemiología , Infertilidad Masculina/epidemiología , Infertilidad Masculina/patología , Masculino , Oligospermia/epidemiología , Oligospermia/patología , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/epidemiología , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/patología
20.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33872827

RESUMEN

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...