Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260537

RESUMEN

Structured abstractO_ST_ABSObjectivesC_ST_ABSTo characterise within-hospital SARS-CoV-2 transmission across two waves of the COVID-19 pandemic. DesignA retrospective Bayesian modelling study to reconstruct transmission chains amongst 2181 patients and healthcare workers using combined viral genomic and epidemiological data. SettingA large UK NHS Trust with over 1400 beds and employing approximately 17,000 staff. Participants780 patients and 522 staff testing SARS-CoV-2 positive between 1st March 2020 and 25th July 2020 (Wave 1); and 580 patients and 299 staff testing SARS-CoV-2 positive between 30th November 2020 and 24th January 2021 (Wave 2). Main outcome measuresTransmission pairs including who-infected-whom; location of transmission events in hospital; number of secondary cases from each individual, including differences in onward transmission from community and hospital onset patient cases. ResultsStaff-to-staff transmission was estimated to be the most frequent transmission type during Wave 1 (31.6% of observed hospital-acquired infections; 95% CI 26.9 to 35.8%), decreasing to 12.9% (95% CI 9.5 to 15.9%) in Wave 2. Patient-to-patient transmissions increased from 27.1% in Wave 1 (95% CI 23.3 to 31.4%) to 52.1% (95% CI 48.0 to 57.1%) in Wave 2, to become the predominant transmission type. Over 50% of hospital-acquired infections were concentrated in 8/120 locations in Wave 1 and 10/93 locations in Wave 2. Approximately 40% to 50% of hospital-onset patient cases resulted in onward transmission compared to less than 4% of definite community-acquired cases. ConclusionsPrevention and control measures that evolved during the COVID-19 pandemic may have had a significant impact on reducing infections between healthcare workers, but were insufficient during the second wave to prevent a high number of patient-to-patient transmissions. As hospital-acquired cases appeared to drive most onward transmissions, more frequent and rapid identification and isolation of these cases will be required to break hospital transmission chains in subsequent pandemic waves.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256384

RESUMEN

BackgroundIn order to understand the molecular epidemiology of SARS-CoV-2 in Sri Lanka, since March 2020, we carried out genomic sequencing overlaid on available epidemiological data until April 2021. MethodsWhole genome sequencing was carried out on diagnostic sputum or nasopharyngeal swabs from 373 patients with COVID-19. Molecular clock phylogenetic analysis was undertaken to further explore dominant lineages. ResultsThe B.1.411 lineage was most prevalent, which was established in Sri Lanka and caused outbreaks throughout the country until March 2021. The estimated time of the most recent common ancestor of this lineage was 29th June 2020 (95% lower and upper bounds 23rd May to 30th July), suggesting cryptic transmission may have occurred, prior to a large epidemic starting in October 2020. Returning travellers were identified with infections caused by lineage B.1.258, as well as the more transmissible B.1.1.7 lineage, which has replaced B.1.411 to fuel the ongoing large outbreak in the country. ConclusionsThe large outbreak that started in early October, is due to spread of a single virus lineage, B.1.411 until the end of March 2021, when B.1.1.7 emerged and became the dominant lineage.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433156

RESUMEN

SARS-CoV-2 lineage B.1.1.7 viruses are more transmissible, may lead to greater clinical severity, and result in modest reductions in antibody neutralization. subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome and is a crucial step in the SARS-CoV-2 life cycle. Applying our tool (periscope) to ARTIC Network Oxford Nanopore genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA expression profiles are significantly increased in B.1.1.7 infections (n=879). This increase is seen over the previous dominant circulating lineage in the UK, B.1.177 (n=943), which is independent of genomic reads, E gene cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median expression. We hypothesise that this is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT>CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3 of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles in sequence data to evaluate emerging potential variants of concern. One Sentence SummaryThe recently emerged and more transmissible SARS-CoV-2 lineage B.1.1.7 shows greater subgenomic RNA expression in clinical infections and enhanced expression of a noncanonical subgenomic RNA near ORF9b.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA