Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(20): 202501, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267578

RESUMEN

We demonstrate a new technique for obtaining fission data for nuclei away from ß stability. These types of data are pertinent to the astrophysical r process, crucial to a complete understanding of the origin of the heavy elements, and for developing a predictive model of fission. These data are also important considerations for terrestrial applications related to power generation and safeguarding. Experimentally, such data are scarce due to the difficulties in producing the actinide targets of interest. The solenoidal-spectrometer technique, commonly used to study nucleon-transfer reactions in inverse kinematics, has been applied to the case of transfer-induced fission as a means to deduce the fission-barrier height, among other variables. The fission-barrier height of ^{239}U has been determined via the ^{238}U(d,pf) reaction in inverse kinematics, the results of which are consistent with existing neutron-induced fission data indicating the validity of the technique.

2.
Phys Rev Lett ; 129(15): 152501, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269970

RESUMEN

Absolute cross sections for the addition of s- and d-wave neutrons to ^{14}C and ^{14}N have been determined simultaneously via the (d,p) reaction at 10 MeV/u. The difference between the neutron and proton separation energies, ΔS, is around -20 MeV for the ^{14}C+n system and +8 MeV for ^{14}N+n. The population of the 1s_{1/2} and 0d_{5/2} orbitals for both systems is reduced by a factor of approximately 0.5 compared with the independent single-particle model, or about 0.6 when compared with the shell model. This finding strongly contrasts with results deduced from intermediate-energy knockout reactions between similar nuclei on targets of ^{9}Be and ^{12}C. The simultaneous technique used removes many systematic uncertainties.

3.
Phys Rev Lett ; 124(6): 062502, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109128

RESUMEN

The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of ^{206}Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of ^{207}Hg marks a first step in improving our understanding of the relevant structural properties of nuclei involved in a key part of the path of the r process.

4.
Phys Rev Lett ; 108(2): 022501, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22324674

RESUMEN

The quantitative consistency of nucleon transfer reactions as a probe of the occupancy of valence orbits in nuclei is tested. Neutron-adding, neutron-removal, and proton-adding transfer reactions were measured on the four stable even Ni isotopes, with particular attention to the cross section determinations. The data were analyzed consistently in terms of the distorted wave Born approximation to yield spectroscopic factors. Valence-orbit occupancies were extracted, utilizing the Macfarlane-French sum rules. The deduced occupancies are consistent with the changing number of valence neutrons, as are the vacancies for protons, both at the level of <5%. While there has been some debate regarding the true "observability" of spectroscopic factors, the present results indicate that empirically they yield self-consistent results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...