Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19264, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935811

RESUMEN

Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.


Asunto(s)
Glioma , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Glioma/terapia , Glioma/patología , Superóxidos , Campos Electromagnéticos
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834607

RESUMEN

Based on the postulate that glioblastoma (GBM) tumors generate anti-inflammatory prostaglandins and bile salts to gain immune privilege, we analyzed 712 tumors in-silico from three GBM transcriptome databases for prostaglandin and bile synthesis/signaling enzyme-transcript markers. A pan-database correlation analysis was performed to identify cell-specific signal generation and downstream effects. The tumors were stratified by their ability to generate prostaglandins, their competency in bile salt synthesis, and the presence of bile acid receptors nuclear receptor subfamily 1, group H, member 4 (NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1). The survival analysis indicates that tumors capable of prostaglandin and/or bile salt synthesis are linked to poor outcomes. Tumor prostaglandin D2 and F2 syntheses are derived from infiltrating microglia, whereas prostaglandin E2 synthesis is derived from neutrophils. GBMs drive the microglial synthesis of PGD2/F2 by releasing/activating complement system component C3a. GBM expression of sperm-associated heat-shock proteins appears to stimulate neutrophilic PGE2 synthesis. The tumors that generate bile and express high levels of bile receptor NR1H4 have a fetal liver phenotype and a RORC-Treg infiltration signature. The bile-generating tumors that express high levels of GPBAR1 are infiltrated with immunosuppressive microglia/macrophage/myeloid-derived suppressor cells. These findings provide insight into how GBMs generate immune privilege and may explain the failure of checkpoint inhibitor therapy and provide novel targets for treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Masculino , Humanos , Prostaglandinas , Glioblastoma/metabolismo , Ácidos y Sales Biliares , Privilegio Inmunológico , Semen/metabolismo , Dinoprostona , Prostaglandinas Sintéticas , Neoplasias Encefálicas/metabolismo , Receptores Acoplados a Proteínas G/genética
3.
Neuro Oncol ; 24(4): 556-568, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515312

RESUMEN

BACKGROUND: We postulate that meningiomas undergo distinct metabolic reprogramming in tumorigenesis and unraveling their metabolic phenotypes provide new therapeutic insights. Glutamine catabolism is key to the growth and proliferation of tumors. Here, we investigated the metabolomics of freshly resected meningiomas and glutamine metabolism in patient-derived meningioma cells. METHODS: 1H NMR spectroscopy of tumor tissues from meningioma patients was used to differentiate the metabolite profiles of grade-I and grade-II meningiomas. Glutamine metabolism was examined using 13C/15N glutamine tracer, in 5 patient-derived meningioma cells. RESULTS: Alanine, lactate, glutamate, glutamine, and glycine were predominantly elevated only in grade-II meningiomas by 74%, 76%, 35%, 75%, and 33%, respectively, with alanine and glutamine levels being statistically significant (P ≤ .02). 13C/15N glutamine tracer experiments revealed that both grade-I and -II meningiomas actively metabolize glutamine to generate various key carbon intermediates including alanine and proline that are necessary for the tumor growth. Also, it is shown that glutaminase (GLS1) inhibitor, CB-839 is highly effective in downregulating glutamine metabolism and decreasing proliferation in meningioma cells. CONCLUSION: Alanine and glutamine/glutamate are mainly elevated in grade-II meningiomas. Grade-I meningiomas possess relatively higher glutamine metabolism providing carbon/nitrogen for the biosynthesis of key nonessential amino acids. GLS1 inhibitor (CB-839) is very effective in downregulating glutamine metabolic pathways in grade-I meningiomas leading to decreased cellular proliferation.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Aminoácidos , Niño , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo
4.
Front Oncol ; 11: 768758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858847

RESUMEN

Electromagnetic fields (EMF) raise intracellular levels of reactive oxygen species (ROS) that can be toxic to cancer cells. Because weak magnetic fields influence spin state pairing in redox-active radical electron pairs, we hypothesize that they disrupt electron flow in the mitochondrial electron transport chain (ETC). We tested this hypothesis by studying the effects of oscillating magnetic fields (sOMF) produced by a new noninvasive device involving permanent magnets spinning with specific frequency and timing patterns. We studied the effects of sOMF on ETC by measuring the consumption of oxygen (O2) by isolated rat liver mitochondria, normal human astrocytes, and several patient derived brain tumor cells, and O2 generation/consumption by plant cells with an O2 electrode. We also investigated glucose metabolism in tumor cells using 1H and 13C nuclear magnetic resonance and assessed mitochondrial alterations leading to cell death by using fluorescence microscopy with MitoTracker™ and a fluorescent probe for Caspase 3 activation. We show that sOMF of appropriate field strength, frequency, and on/off profiles completely arrest electron transport in isolated, respiring, rat liver mitochondria and patient derived glioblastoma (GBM), meningioma and diffuse intrinsic pontine glioma (DIPG) cells and can induce loss of mitochondrial integrity. These changes correlate with a decrease in mitochondrial carbon flux in cancer cells and with cancer cell death even in the non-dividing phase of the cell cycle. Our findings suggest that rotating magnetic fields could be therapeutically efficacious in brain cancers such as GBM and DIPG through selective disruption of the electron flow in immobile ETC complexes.

5.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681642

RESUMEN

Regulatory T-cells (Tregs) are immunosuppressive T-cells, which arrest immune responses to 'Self' tissues. Some immunosuppressive Tregs that recognize seminal epitopes suppress immune responses to the proteins in semen, in both men and women. We postulated that GBMs express reproductive-associated proteins to manipulate reproductive Tregs and to gain immune privilege. We analyzed four GBM transcriptome databases representing ≈900 tumors for hypoxia-responsive Tregs, steroidogenic pathways, and sperm/testicular and placenta-specific genes, stratifying tumors by expression. In silico analysis suggested that the presence of reproductive-associated Tregs in GBM tumors was associated with worse patient outcomes. These tumors have an androgenic signature, express male-specific antigens, and attract reproductive-associated Related Orphan Receptor C (RORC)-Treg immunosuppressive cells. GBM patient sera were interrogated for the presence of anti-sperm/testicular antibodies, along with age-matched controls, utilizing monkey testicle sections. GBM patient serum contained anti-sperm/testicular antibodies at levels > six-fold that of controls. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are associated with estrogenic tumors which appear to mimic placental tissue. We demonstrate that RORC-Tregs drive poor patient outcome, and Treg infiltration correlates strongly with androgen levels. Androgens support GBM expression of sperm/testicular proteins allowing Tregs from the patient's reproductive system to infiltrate the tumor. In contrast, estrogen appears responsible for MDSC/TAM immunosuppression.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Andrógenos/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Bases de Datos Factuales , Estrógenos/metabolismo , Femenino , Glioblastoma/inmunología , Glioblastoma/mortalidad , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Microglía/inmunología , Microglía/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología
6.
J Cancer Res Clin Oncol ; 147(12): 3577-3589, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34477946

RESUMEN

PURPOSE: The mechanisms underlying anticancer effects of electromagnetic fields are poorly understood. An alternating electric field-generating therapeutic device called Optune™ device has been approved for the treatment of glioblastoma (GBM). We have developed a new device that generates oscillating magnetic fields (OMF) by rapid rotation of strong permanent magnets in specially designed patterns of frequency and timing and have used it to treat an end-stage recurrent GBM patient under an expanded access/compassionate use treatment protocol. Here, we ask whether OMF causes selective cytotoxic effects in GBM and whether it is through generation of reactive oxygen species (ROS). METHODS: We stimulated patient derived GBM cells, lung cancer cells, normal human cortical neurons, astrocytes, and bronchial epithelial cells using OMF generators (oncoscillators) of our Oncomagnetic Device and compared the results to those obtained under unstimulated or sham-stimulated control conditions. Quantitative fluorescence microscopy was used to assess cell morphology, viability, and ROS production mechanisms. RESULTS: We find that OMF induces highly selective cell death of patient derived GBM cells associated with activation of caspase 3, while leaving normal tissue cells undamaged. The cytotoxic effect of OMF is also seen in pulmonary cancer cells. The underlying mechanism is a marked increase in ROS in the mitochondria, possibly in part through perturbation of the electron flow in the respiratory chain. CONCLUSION: Rotating magnetic fields produced by a new noninvasive device selectively kill cultured human glioblastoma and non-small cell lung cancer cells by raising intracellular reactive oxygen species, but not normal human tissue cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Magnetoterapia/métodos , Muerte Celular , Humanos , Células Tumorales Cultivadas
7.
Front Oncol ; 11: 708017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367992

RESUMEN

Alternating electric field therapy has been approved for glioblastoma (GBM). We have preclinical evidence for anticancer effects in GBM cell cultures and mouse xenografts with an oscillating magnetic field (OMF) generating device. Here we report OMF treatment of end-stage recurrent glioblastoma in a 53-year-old man who had undergone radical surgical excision and chemoradiotherapy, and experimental gene therapy for a left frontal tumor. He experienced tumor recurrence and progressive enlargement with leptomeningeal involvement. OMF for 5 weeks was well tolerated, with 31% reduction of contrast-enhanced tumor volume and reduction in abnormal T2-weighted Fluid-Attenuated Inversion Recovery volume. Tumor shrinkage appeared to correlate with treatment dose. These findings suggest a powerful new noninvasive therapy for glioblastoma.

8.
Cancers (Basel) ; 13(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920278

RESUMEN

BACKGROUND: Glioblastoma (GBM) can use metabolic fuels other than glucose (Glc). The ability of GBM to use galactose (Gal) as a fuel via the Leloir pathway is investigated. METHODS: Gene transcript data were accessed to determine the association between expression of genes of the Leloir pathway and patient outcomes. Growth studies were performed on five primary patient-derived GBM cultures using Glc-free media supplemented with Gal. The role of Glut3/Glut14 in sugar import was investigated using antibody inhibition of hexose transport. A specific inhibitor of GALK1 (Cpd36) was used to inhibit Gal catabolism. Gal metabolism was examined using proton, carbon and phosphorous NMR spectroscopy, with 13C-labeled Glc and Gal as tracers. RESULTS: Data analysis from published databases revealed that elevated levels of mRNA transcripts of SLC2A3 (Glut3), SLC2A14 (Glut14) and key Leloir pathway enzymes correlate with poor patient outcomes. GBM cultures proliferated when grown solely on Gal in Glc-free media and switching Glc-grown GBM cells into Gal-enriched/Glc-free media produced elevated levels of Glut3 and/or Glut14 enzymes. The 13C NMR-based metabolic flux analysis demonstrated a fully functional Leloir pathway and elevated pentose phosphate pathway activity for efficient Gal metabolism in GBM cells. CONCLUSION: Expression of Glut3 and/or Glut14 together with the enzymes of the Leloir pathway allows GBM to transport and metabolize Gal at physiological glucose concentrations, providing GBM cells with an alternate energy source. The presence of this pathway in GBM and its selective targeting may provide new treatment strategies.

9.
Mol Cancer Ther ; 19(12): 2445-2453, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33033175

RESUMEN

We have previously reported the in vitro and in vivo efficacy of N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propenamide (MP-MUS), a prodrug that targeted the mitochondria of glioblastoma (GBM). The mitochondrial enzyme, monoamine oxidase B (MAOB), is highly expressed in GBM and oxidizes an uncharged methyl-tetrahydropyridine (MP-) moiety into the mitochondrially targeted cationic form, methyl-pyridinium (P+-). Coupling this MAOB-sensitive group to a nitrogen mustard produced a prodrug that damaged GBM mitochondria and killed GBM cells. Unfortunately, the intrinsic reactivity of the nitrogen mustard group and low solubility of MP-MUS precluded clinical development. In our second-generation prodrug, MP-Pt(IV), we coupled the MP group to an unreactive cisplatin precursor. The enzymatic conversion of MP-Pt(IV) to P+-Pt(IV) was tested using recombinant human MAOA and rhMAOB. The generation of cisplatin from Pt(IV) by ascorbate was studied optically and using mass spectroscopy. Efficacy toward primary GBM cells and tumors was studied in vitro and in an intracranial patient-derived xenograft mice GBM model. Our studies demonstrate that MP-Pt(IV) is selectively activated by MAOB. MP-Pt(IV) is highly toxic toward GBM cells in vitro MP-Pt(IV) toxicity against GBM is potentiated by elevating mitochondrial ascorbate and can be arrested by MAOB inhibition. In in vitro studies, sublethal MP-Pt(IV) doses elevated mitochondrial MAOB levels in surviving GBM cells. MP-Pt(IV) is a potent chemotherapeutic in intracranial patient-derived xenograft mouse models of primary GBM and potentiates both temozolomide and temozolomide-chemoradiation therapies. MP-Pt(IV) was well tolerated and is highly effective against GBM in both in vitro and in vivo models.


Asunto(s)
Antineoplásicos/farmacología , Glioblastoma/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Profármacos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Inhibidores de la Monoaminooxidasa/uso terapéutico , Proteínas Recombinantes , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancers (Basel) ; 12(2)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075134

RESUMEN

Various pathways can repair DNA alkylation by chemotherapeutic agents such as temozolomide (TMZ). The enzyme O6-methylguanine methyltransferase (MGMT) removes O6-methylated DNA adducts, leading to the failure of chemotherapy in resistant glioblastomas. Because of the anti-chemotherapeutic activities of MGMT previously described, estimating the levels of active MGMT in cancer cells can be a significant predictor of response to alkylating agents. Current methods to detect MGMT in cells are indirect, complicated, time-intensive, or utilize molecules that require complex and multistep chemistry synthesis. Our design simulates DNA repair by the transfer of a clickable propargyl group from O6-propargyl guanine to active MGMT and subsequent attachment of fluorescein-linked PEG linker via "click chemistry." Visualization of active MGMT levels reveals discrete active and inactive MGMT populations with biphasic kinetics for MGMT inactivation in response to TMZ-induced DNA damage.

11.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033192

RESUMEN

BACKGROUND: Rathke's Cleft Cysts (RCCs) are rare epithelial cysts arising from remnants of the Rathke pouch in the pituitary gland. A subset of these lesions enlarge and produce a mass effect with consequent hypopituitarism, and may result in visual loss. Moreover, some RCCs with a high intra-cystic protein content may mimic cystic pituitary adenoma, which makes their differential diagnosis ambiguous. Currently, medical professionals have no definitive way to distinguish RCCs from pituitary adenomas. Therefore, preoperative confirmation of RCCs would be of help to medical professionals for the management and proper surgical decision making. The goal of this study is to identify molecular markers in RCCs. METHODS: We characterized aqueous and chloroform extracts of surgically resected RCCs and pituitary adenomas using ex vivo 1H NMR spectroscopy. RESULTS: All RCCs exclusively showed the presence of mucopolysaccharides which are glycosaminoglycans (GAGs) made up of disaccharides of aminosugars and uronic sugars. CONCLUSION: GAGs can be used as metabolite marker for the detection of RCCs and this knowledge will lay the groundwork for the development of a non-invasive, in vivo magnetic resonance spectroscopy methodology for the differential diagnosis of RCCs and pituitary adenomas using clinical MRI scanners.

12.
Sci Rep ; 10(1): 1334, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992791

RESUMEN

The diagnosis of various histological subtypes of pituitary tumors is made using serum based hormone panel test. However, certain subtypes secrete more than one hormone, making the diagnosis ambiguous. Here, we performed 1H-NMR based metabolomic analysis of serum and whole-blood from luteinizing/follicle-stimulating (LH/FSH)-secreting (n = 24), prolactinomas (n = 14), and non-functional (NF) (n = 9) tumors. We found elevated levels of betahydroxybutyrate (BHB) in serum and whole-blood (WB) of prolactinomas (0.481 ± 0.211/0.329 ± 0.228 mM in serum/WB), but it was statistically significant (p ≤ 0.0033, Bonferroni correction) only in serum when compared with LH/FSH-secreting tumor patients (0.269 ± 0.139/0.167 ± 0.113 mM in serum/WB). Phenylalanine in NF tumors was found to be elevated in both serum and WB when compared with prolactinomas but it met the statistical significance criteria (p ≤ 0.0028) only in the serum. Alanine (p ≤ 0.011), tyrosine (p ≤ 0.014) and formate (p ≤ 0.011) were also elevated in NF tumors but none showed statistically significance when compared with prolactinomas. Quantification of BHB and the above amino acids in the circulation may aid in the development of blood-based in vitro diagnostic methods which can supplement the currently used serum hormone panel in the diagnosis of various subtypes of pituitary tumors.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Neoplasias Hipofisarias/sangre , Neoplasias Hipofisarias/diagnóstico , Prolactinoma/sangre , Prolactinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Diagnóstico Diferencial , Femenino , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Curva ROC
13.
Front Neurosci ; 13: 541, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191233

RESUMEN

We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bß, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bß, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 µM), TNF-α (100 nM), ATP-γ-S (100 µM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bß increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.

14.
Oncotarget ; 9(35): 23923-23943, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29844863

RESUMEN

Via extensive analyses of genetic databases, we have characterized the DNA-repair capacity of glioblastoma with respect to patient survival. In addition to elevation of O6-methylguanine DNA methyltransferase (MGMT), down-regulation of three DNA repair pathways; canonical mismatch repair (MMR), Non-Homologous End-Joining (NHEJ), and Homologous Recombination (HR) are correlated with poor patient outcome. We have designed and tested both in vitro and in vivo, a monoamine oxidase B (MAOB) specific prodrug, PAM-OBG, that is converted by glioma MAOB into the MGMT inhibitor O6-benzylguanine (O6BG) and the DNA crosslinking agent acrolein. In cultured glioma cells, we show that PAM-OBG is converted to O6BG, inhibiting MGMT and sensitizing cells to DNA alkylating agents such as BCNU, CCNU, and Temozolomide (TMZ). In addition, we demonstrate that the acrolein generated is highly toxic in glioma treated with an inhibitor of Nucleotide Excision Repair (NER). In mouse intracranial models of primary human glioma, we show that PAM-OBG increases survival of mice treated with either BCNU or CCNU by a factor of six and that in a chemoradiation model utilizing six rounds of TMZ/2Gy radiation, pre-treatment with PAM-OBG more than doubled survival time.

15.
Anal Biochem ; 552: 110-117, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29654744

RESUMEN

Earlier studies on glucose metabolism in B-cells suggested an active TCA cycle in both naïve B cells and differentiated IgA plasma cells. Glycolysis was shown to be more active in IgA plasma cells than naïve B-cells. There have been no reports on the metabolism of fructose in B-cells. Fructose is a major sugar present in the western diet. Thus, we have investigated the metabolism of fructose in B-cells including the effect of glucose on the metabolism of fructose. In this study, using 13C NMR spectroscopy and [U-13C]fructose and [U-13C]glucose as stable 13C isotope tracers, we investigated the metabolic fate of fructose and glucose in B-cells. B-cells showed mitochondrial oxidation of fructose when administered alone, but showed diminished oxidation of fructose in the presence of glucose. On the other hand, fructose did not significantly affect the mitochondrial metabolism of glucose.


Asunto(s)
Linfocitos B/metabolismo , Fructosa/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Células Cultivadas , Ácido Glutámico/metabolismo , Humanos , Lactatos/metabolismo , Mitocondrias/metabolismo
16.
ACS Chem Neurosci ; 9(1): 107-117, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28753296

RESUMEN

Selective targeting of drug loaded nanovectors to specific epitopes highly expressed on the surface of cancer cells is a goal for nanotechnologists. We have modified our previously described PEGylated-hydrophilic carbon clusters (PEG-HCCs) so that the epidermal growth factor receptor (EGFR) binding peptide, GE11, is attached using click chemistry at the end of each PEG. The resulting nanosyringe, PepEGFR-PEG-HCC, can be loaded with a wide range of hydrophobic drugs and dyes. We show that, both in vitro and in vivo, this payload can be delivered to cancer cells expressing EGFR. We can observe the activation of EGFR and track the normal physiological internalization and recycling/signaling pathways of this tyrosine kinase following binding of PepEGFR-PEG-HCC. We also demonstrate the competitive binding of the nanosyringe to EGFR with its normal activator, EGF, as well as observing the colocalization of the nanosyringe with clathrin, the coated pit integral protein. The internalization of the drug/dye loaded nanosyringe can be inhibited by using anti-EGFR antibodies, the drug erlotinib, or Pitstop-1, the clathrin coated pit formation specific inhibitor. To further demonstrate the specificity of the drug loaded nanovectors, we demonstrated that, in both flank and intracranial xenograft mouse models, dye delivery is highly specific to tumors and no other tissues. Finally, using nanosyringes loaded with esterase sensitive fluorescein diacetate, we demonstrated that the drug payloads can be in vivo delivered to the cytosol of cancer cells within the mouse brain.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Receptores ErbB/metabolismo , Colorantes Fluorescentes/administración & dosificación , Nanoestructuras , Animales , Anticuerpos/farmacología , Línea Celular Tumoral , Clatrina/metabolismo , Química Clic , Cumarinas/administración & dosificación , Doxorrubicina/administración & dosificación , Endocitosis/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Humanos , Ratones Desnudos , Trasplante de Neoplasias , Oxazinas/administración & dosificación , Péptidos/química , Polietilenglicoles/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Tiazoles/administración & dosificación
17.
Oncotarget ; 7(3): 3379-93, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26689994

RESUMEN

Monoamine oxidases A and B (MAOA and MAOB) are highly expressed in many cancers. Here we investigated the level of MAOB in gliomas and confirmed its high expression. We found that MAOB levels correlated with tumor grade and hypoxia-inducible factor 1-alpha (HiF-1α) expression. HiF-1α was localized to the nuclei in high-grade gliomas, but it was primarily cytosolic in low-grade gliomas and normal human astrocytes. Expression of both glial fibrillary acidic protein (GFAP) and MAOB are correlated to HiF-1α expression levels. Levels of MAOB are correlated by the levels of transcription factor Sp3 in the majority of GBM examined, but this control of MAOB expression by Sp3 in low grade astrocytic gliomas is significantly different from control in the in the majority of glioblastomas. The current findings support previous suggestions that MAOB can be exploited for the killing of cancer cells. Selective cell toxicity can be achieved by designing non-toxic prodrugs that require MAOB for their catalytic conversion into mature cytotoxic chemotherapeutics.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioma/enzimología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Monoaminooxidasa/metabolismo , Peróxidos/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Técnicas para Inmunoenzimas , Clasificación del Tumor , Pronóstico , Análisis de Matrices Tisulares
18.
EBioMedicine ; 2(9): 1122-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26501110

RESUMEN

The last major advance in the treatment of glioblastoma multiforme (GBM) was the introduction of temozolomide in 1999. Treatment with temozolomide following surgical debulking extends survival rate compared to radiotherapy and debulking alone. However, virtually all glioblastoma patients experience disease progression within 7 to 10 months. Although many salvage treatments, including bevacizumab, rechallenge with temozolomide, and other alkylating agents, have been evaluated, none of these clearly improves survival. Monoamine oxidase B (MAOB) is highly expressed in glioblastoma cell mitochondria, and mitochondrial function is intimately tied to treatment-resistant glioblastoma progression. These glioblastoma properties provide a strong rationale for pursuing a MAOB-selective pro-drug treatment approach that, upon drug activation, targets glioblastoma mitochondria, especially mitochondrial DNA. MP-MUS is the lead compound in a family of pro-drugs designed to treat GBM that is converted into the mature, mitochondria-targeting drug, P(+)-MUS, by MAOB. We show that MP-MUS can successfully kill primary gliomas in vitro and in vivo mouse xenograft models.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Monoaminooxidasa/metabolismo , Profármacos/uso terapéutico , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , ADN Mitocondrial/metabolismo , Glioblastoma/patología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Enfermedad de Parkinson/complicaciones , Fenotipo , Profármacos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
ChemMedChem ; 10(4): 621-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25677185

RESUMEN

Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO-B-selectively activated prodrug, N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propanamide (MP-MUS), for the treatment of gliomas based on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The design of neutral MP-MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO-B, which is up-regulated ≥fourfold in glioma cells. Once the binding occurs, MP-MUS is converted into a positively charged moiety, P(+) -MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP-MUS against glioma cells is 75 µM, which is two- to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP-MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150-180 µM MP-MUS killed 90-95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP-MUS is highly dependent on MAO-B, and inhibition of MAO-B activity with selegiline protected human glioma cells from apoptosis.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/análogos & derivados , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Glioma/tratamiento farmacológico , Profármacos/química , Profármacos/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Glioma/metabolismo , Glioma/patología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Profármacos/administración & dosificación , Profármacos/metabolismo , Selegilina/farmacología
20.
J Toxicol ; 2013: 159810, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24363669

RESUMEN

It has been postulated that androgen overexposure in a susceptible person leads to excessive brain masculinization and the autism spectrum disorder (ASD) phenotype. In this study, the responses to estradiol (E2), dihydrotestosterone (DHT), and dichlorodiphenyldichloroethylene (DDE) on B-lymphocytes from ASD subjects and controls are compared. B cells were obtained from 11 ASD subjects, their unaffected fraternal twins, and nontwin siblings. Controls were obtained from a different cell bank. Lactate dehydrogenase (LDH) and sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction levels were measured after incubation with different concentrations of E2, DHT, and DDE. XTT/LDH ratio, representative of mitochondria number per cell, was calculated. E2, DHT, and DDE all cause "U"-shaped growth curves, as measured by LDH levels. ASD B cells show less growth depression compared to siblings and controls (P < 0.01). They also have reduced XTT/LDH ratios (P < 0.01) when compared to external controls, whereas siblings had values of XTT/LDH between ASD and external controls. B-lymphocytes from people with ASD exhibit a differential response to E2, DHT, and hormone disruptors in regard to cell growth and mitochondrial upregulation when compared to non-ASD siblings and external controls. Specifically, ASD B-lymphocytes show significantly less growth depression and less mitochondrial upregulation when exposed to these effectors. A mitochondrial deficit in ASD individuals is implied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...