Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673138

RESUMEN

The UK's adoption of pyroprocessing of spent nuclear fuel as an alternative to the current aqueous processing routes requires a robust scientific underpinning of all relevant processes. One key process is the clean-up of the contaminated salt from the electroreducing and electrorefining processes. A proposed method for this clean-up is zone refining, whereby the tendency of the contaminants to remain in the liquid phase during melting and freezing is exploited to 'sweep' the contaminants to one end of the sample. Experiments were performed, utilising off-the-shelf laboratory equipment, to demonstrate the feasibility of zone refining for clean-up of electroreducing and electrorefining wastes. This was successful for the electrorefining simulant samples, with effective segregation coefficient, keff, values, which provide a measure of the degree of separation in the sample, between 0 and 1. Lower values indicate greater separation, with values of as low as 0.542 achieved here, corresponding to a reduction in RECl3 content from 10.0 wt.% to 8.4 wt.% (for 80% salt reuse). Due to difficulties in obtaining a fully homogeneous electroreducing simulant waste, it was not possible to demonstrate the feasibility of zone refining using the current experimental setup. Further research is required to elucidate the correct preparation conditions for production of homogeneous electroreducing waste simulants.

2.
ACS Omega ; 8(48): 46151-46164, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075794

RESUMEN

AISI Type 304 stainless steel coupons have been exposed to a simulant aqueous environment representative of the Magnox Reprocessing Plant (MRP) at Sellafield, UK. The experiments were performed for extended time periods (up to 420 days) at elevated temperatures to develop a comprehensive understanding of the extent, nature, and depth of contamination for pipework and vessels in Magnox spent nuclear fuel reprocessing environments. This will inform upcoming decommissioning work which represents a major post-operational challenge. Previous relevant literature has focused on developing fundamental understanding of contamination mechanisms of stainless steels in simplistic, single-element systems, which lack elements of industrial relevance. Contamination behavior is expected to be drastically different in these more complex environments. A characterization portfolio has been developed to enable detailed assessment of corrosion and contamination behavior in acidic reprocessing environments. Solution, surface, and depth analysis determined that uptake was dominated by the elements present in highest concentrations within the environment, namely, Mg, Nd, and Cs. Most contaminants were incorporated into a relatively thin surface oxide layer (<100 nm) in metal oxide form, although there were some exceptions (Cs and Sr). Grain boundary etching was present despite very low corrosion rates (3 µm year-1). As a result of this lack of corrosion, diffusion of contaminants beyond the immediate surface (10-20 nm) did not occur, evidenced through depth profiling. As a result of these findings, surface-based decontamination techniques minimizing excess secondary waste generation can be further developed in order to reduce the environmental and economic burden associated with decommissioning activities.

3.
Front Chem ; 10: 997147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329859

RESUMEN

This paper is part of a growing body of research work looking at the synthesis of an optimal adsorbent for the capture and containment of aqueous radioiodine from nuclear fuel reprocessing waste. 32 metalated commercial ion exchange resins were subjected to a two-tier screening assessment for their capabilities in the uptake of iodide from aqueous solutions. The first stage determined that there was appreciable iodide capacity across the adsorbent range (12-220 mg·g-1). Candidates with loading capacities above 40 mg·g-1 were progressed to the second stage of testing, which was a fractional factorial experimental approach. The different adsorbents were treated as discrete variables and concentrations of iodide, co-contaminants and protons (pH) as continuous variables. This gave rise to a range of extreme conditions, which were representative of the industrial challenges of radioiodine abatement. Results were fitted to linear regression models, both for the whole dataset (R 2 = 59%) and for individual materials (R 2 = 18-82%). The overall model determined that iodide concentration, nitrate concentration, pH and interactions between these factors had significant influences on the uptake. From these results, the top six materials were selected for project progression, with others discounted due to either poor uptake or noticeable iodide salt precipitation behaviour. These candidates exhibited reasonable iodide uptake in most experimental conditions (average of >20 mg·g-1 hydrated mass), comparing favourably with literature values for metallated adsorbents. Ag-loaded Purolite S914 (thiourea functionality) was the overall best-performing material, although some salt precipitation was observed in basic conditions. Matrix effects not withstanding it is recommended that metalated thiourea, bispicolylamine, and aminomethylphosphonic acid functionalized silicas warrant further exploration.

4.
Chem Commun (Camb) ; 54(89): 12582-12585, 2018 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-30349920

RESUMEN

Complexation of Pu(iv) with the actinide extractant CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline) was followed by vis-NIR spectroscopy in acetonitrile solution. The solid-state structure of the crystallized product suggests that Pu(iv) is reduced to Pu(iii) upon complexation. Analysis by DFT modeling is consistent with metal-based rather than ligand-based reduction.

5.
J Radioanal Nucl Chem ; 317(2): 925-932, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30100650

RESUMEN

The most advanced methodology for the pyroprocessing of spent nuclear fuel is the electrorefining of uranium metal in LiCl-KCl eutectic, in which uranium is solubilized as U(III). The production of U(III) in LiCl-KCl eutectic by the chlorination of uranium metal using BiCl3 has been performed for research purposes. In this work, this reaction was studied in-situ by visual observation, electronic absorption spectroscopy and electrochemistry at 450 °C. The most likely mechanism has been determined to involve the initial direct oxidation of uranium metal by Bi(III) to U(IV). The dissolved U(IV) then reacts with unreacted uranium metal to form U(III).

6.
Chem Commun (Camb) ; 53(58): 8160-8163, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28677706

RESUMEN

A broad range of 1,10-phenanthroline substrates was efficiently C-H functionalised, providing rapid, gram-scale access to substituted heteroaromatic cores of broad utility. Furthermore, this C-H functionalisation pathway was extended to the synthesis of previously inaccessible, ultra-soluble, 2,9-bis-triazinyl-1,10-phenanthroline (BTPhen) ligands for advanced nuclear fuel cycles.

7.
Chem Commun (Camb) ; 53(36): 5001-5004, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28426063

RESUMEN

The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

8.
Dalton Trans ; 45(45): 18102-18112, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27488559

RESUMEN

The first examples of 4,7-disubstituted 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) ligands are reported herein. Evaluating the kinetics, selectivity and stoichiometry of actinide(iii) and lanthanide(iii) radiotracer extractions has provided a mechanistic insight into the extraction process. For the first time, it has been demonstrated that metal ion extraction kinetics can be modulated by backbone functionalisation and a promising new CHON compliant candidate ligand with enhanced metal ion extraction kinetics has been identified. The effects of 4,7-functionalisation on the equilibrium metal ion distribution ratios are far more pronounced than those of 5,6-functionalisation. The complexation of Cm(iii) with two of the functionalised ligands was investigated by TRLFS and, at equilibrium, species of 1 : 2 [M : L] stoichiometry were observed exclusively. A direct correlation between the ELUMO-EHOMO energy gap and metal ion extraction potential is reported, with DFT studies reaffirming experimental findings.

9.
Dalton Trans ; 43(6): 2684-94, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24336798

RESUMEN

The complexation of Cm(III) and Eu(III) with 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bipyridine (CyMe4-BTBP) in methanolic solution was investigated by TRLFS. For both ligands, the 1:2 complex with the particular metal ion is the only species observed in equilibrated samples. The species distribution for various ligand concentrations was determined and stability constants of the 1:2 complexes were derived (log ß2 = 13.8 ± 0.2 (Cm(III)-CyMe4-BTPhen), log ß2 = 11.6 ± 0.4 (Eu(III)-CyMe4-BTPhen), log ß2 = 12.4 ± 0.3 (Cm(III)-CyMe4-BTBP) and log ß2 = 11.3 ± 0.3 (Eu(III)-CyMe4-BTBP)). Biphasic experiments in combination with TRLFS studies on the organic phase revealed the formation of ternary complexes with two CyMe4-BTPhen or -BTBP molecules and additional coordination of a nitrate anion as species formed during the extraction process.

10.
Inorg Chem ; 52(7): 3728-37, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23496236

RESUMEN

The aqueous solution behavior of An(III) (An = Am or Cm) in the presence of EDTA(4-) (ethylenediamine tetraacetate), CO3(2-) (carbonate), and OH(-) (hydroxide) ligands has been probed in aqueous nitrate solution (various concentrations) at room temperature by UV-vis absorption and luminescence spectroscopies (Cm systems analyzed using UV-vis only). Ternary complexes have been shown to exist, including [An(EDTA)(CO3)](3-)(aq), (where An = Am(III) or Cm(III)), which form over the pH range 8 to 11. It is likely that carbonate anions and water molecules are in dynamic exchange for complexation to the [An(EDTA)](-)(aq) species. The carbonate ion is expected to bind as a bidentate ligand and replaces two coordinated water molecules in the [An(EDTA)](-)(aq) complex. In a 1:1 Am(III)/EDTA(4-) binary system, luminescence spectroscopy shows that the number of coordinated water molecules (N(H2O)) decreases from ~8 to ~3 as pH is increased from approximately 1 to 10. This is likely to represent the formation of the [Am(EDTA)(H2O)3](-) species as pH is raised. For a 1:1:1 Am(III)/EDTA(4-)/CO3(2-) ternary system, the N(H2O) to the [Am(EDTA)](-)(aq) species over the pH range 8 to 11 falls between 2 and 3 (cf. ~3 to ~4 in the binary system) indicating formation of the [An(EDTA)(CO3)](3-)(aq) species. As pH is further increased from approximately 10 to 12 in both systems, there is a sharp decrease in N(H2O) from ~3 to ~2 in the binary system and from ~2 to ~1 in the ternary system. This is likely to correlate to the formation of hydrolyzed species (e.g., [Am(EDTA)(OH)](2-)(aq) and/or Am(OH)(3(s))).

11.
Inorg Chem ; 52(7): 3429-44, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23438021

RESUMEN

Lanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln(3+)/L(N4-donor) species (Ln = Pr(3+), Eu(3+), Tb(3+)) in methanol when the N-donor ligand was in excess. When the Ln(3+) ion was in excess, evidence for formation of a 1:1 Ln(3+)/L(N4-donor) complex species was observed. Luminescent lifetime studies of mixtures of Eu(3+) with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu(3+) and Tb(3+) species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln(3+)/L(N-donor) species.

12.
Dalton Trans ; 41(30): 9209-19, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22729349

RESUMEN

The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2' : 6',2''-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.

13.
Dalton Trans ; 40(22): 5939-52, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21526261

RESUMEN

The reaction of uranyl nitrate hexahydrate with the maleonitrile containing Schiff base 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (salmnt((Et(2)N)(2))H(2)) in methanol produces [UO(2)(salmnt((Et2N)2))(H(2)O)] (1) where the uranyl equatorial coordination plane is completed by the N(2)O(2) tetradentate cavity of the (salmnt((Et(2)N)(2)))(2-) ligand and a water molecule. The coordinated water molecule readily undergoes exchange with pyridine (py), dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF) and triphenylphosphine oxide (TPPO) to give a series of [UO(2)(salmnt((Et(2)N)(2)))(L)] complexes (L = py, DMSO, DMF, TPPO; 2-5, respectively). X-Ray crystallography of 1-5 show that the (salmnt((Et(2)N)(2)))(2-) ligand is distorted when coordinated to the uranyl moiety, in contrast to the planar structure observed for the free protonated ligand (salmnt((Et(2)N)(2))H(2)). The Raman spectra of 1-5 only display extremely weak bands (819-828 cm(-1)) that can be assigned to the typically symmetric O=U=O stretch. This stretching mode is also observed in the infrared spectra for all complexes 1-5 (818-826 cm(-1)) predominantly caused by the distortion of the tetradentate (salmnt((Et(2)N)(2)))(2-) ligand about the uranyl equatorial plane resulting in a change in dipole for this bond stretch. The solution behaviour of 2-5 was studied using NMR, electronic absorption and emission spectroscopy, and cyclic voltammetry. Complexes 2-5 exhibit intense absorptions in the visible region of the spectrum due to intramolecular charge transfer (ICT) transitions and the luminescence lifetimes (< 5 ns) indicate the emission arises from ligand-centred excited states. Reversible redox processes assigned to the {UO(2)}(2+)/{UO(2)}(+) couple are observed for complexes 2-5 (2: E(1/2) = -1.80 V; 3,5: E(1/2) = -1.78 V; 4: E(1/2) = -1.81 V : vs. ferrocenium/ferrocene {Fc(+)/Fc}, 0.1 M Bu(4)NPF(6)) in dichloromethane (DCM). These are some of the most negative half potentials for the {UO(2)}(2+)/{UO(2)}(+) couple observed to date and indicate the strong electron donating nature of the (salmnt((Et(2)N)(2)))(2-) ligand. Multiple uranyl redox processes are clearly seen for [UO(2)(salmnt((Et(2)N)(2)))(L)] in L (L = py, DMSO, DMF; 2-4: 0.1 M Bu(4)NPF(6)) indicating the relative instability of these complexes when competing ligands are present, but the reversible {UO(2)}(2+)/{UO(2)}(+) couple for the intact complexes can still be assigned and shows the position of this couple can be modulated by the solvation environment. Several redox processes were also observed between +0.2 and +1.2 V (vs. Fc(+)/Fc) that prove the redox active nature of the maleonitrile-containing ligand.


Asunto(s)
Nitrilos/química , Compuestos Organometálicos/química , Análisis Espectral , Uranio/química , Electroquímica , Ligandos , Oxidación-Reducción
14.
Chemistry ; 16(10): 3166-75, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20135649

RESUMEN

The potentially hexadentate mixed-donor cage ligand 1-methyl-8-amino-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]eicosane (AMME-N(3)S(3)sar; sar=sarcophagine) displays variable coordination modes in a complex with copper(II). In the absence of coordinating anions, the ligand adopts a conventional hexadentate N(3)S(3) binding mode in the complex [Cu(AMME-N(3)S(3)sar)](ClO(4))(2) that is typical of cage ligands. This structure was determined by X-ray crystallography and solution spectroscopy (EPR and NIR UV/Vis). However, in the presence of bromide ions in DMSO, clean conversion to a five-coordinate bromido complex [Cu(AMME-N(3)S(3)sar)Br](+) is observed that features a novel tetradentate (N(2)S(2))-coordinated form of the cage ligand. This copper(II) complex has also been characterized by X-ray crystallography and solution spectroscopy. The mechanism of the reversible interconversion between the six- and five-coordinated copper(II) complexes has been studied and the reaction has been resolved into two steps; the rate of the first is linearly dependent on bromide ion concentration and the second is bromide independent. Electrochemistry of both [Cu(AMME-N(3)S(3)sar)](2+) and [Cu(AMME-N(3)S(3)sar)Br](+) in DMSO shows that upon reduction to the monovalent state, they share a common five-coordinated form in which the ligand is bound to copper in a tetradentate form exclusively, regardless of whether a six- or five-coordinated copper(II) complex is the precursor.


Asunto(s)
Compuestos de Azabiciclo/química , Cobre/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Ligandos , Estructura Molecular
15.
Inorg Chem ; 47(17): 7474-82, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18665589

RESUMEN

Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

16.
Dalton Trans ; (48): 5734-42, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17146538

RESUMEN

A series of thorium(IV) perrhenato- and pertechnetato-complexes with P[double bond, length as m-dash]O donor ligands have been prepared and characterised both in the solid state and in solution. Isostructural complexes of general formula [Th(MO(4))(4)(L)(4)], where M = Re or Tc and L = triethylphosphate (TEP) (2 and 7), tri-iso-butylphosphate (TiBP) (3 and 8) and tri-n-butylphosphine oxide (TBPO) (4 and 9) have been prepared from the novel starting materials [Th(ReO(4))(4)] x 4H(2)O (1) and [Th(TcO(4))(4)] x 4H(2)O (6). The reaction of or with triphenylphosphine oxide (TPPO) in MeOH has also led to the synthesis of [Th(MO(4))(3)(TPPO)(3)(OCH(3))(HOCH(3))] (M = Re (5) or Tc (10)). While the structural characterisation of 4 and 9 has been previously described, we report for the first time the structural characterisation of 2 and 5, with a partial structural refinement of 3. Vibrational spectroscopic analysis confirms that the Tc complexes not characterised by single crystal X-ray diffraction are indeed isostructural with the perrhenate complexes with the same P[double bond, length as m-dash]O donor ligand. In all cases, monodentate coordination of the Group 7 tetraoxo anion is observed. (31)P NMR spectroscopy indicates that in all the phosphine oxide-based complexes there is one dominant solution species. For the phosphate based systems, the presence of pertechnetate appears to inhibit P[double bond, length as m-dash]O donor ligand complexation in solution, whereas a significant proportion of each phosphate remains coordinated to Th(IV) when perrhenate is present as the counter ligand. These results give some indication as to the mechanism of pertechnetate co-extraction with tetravalent cations in the presence of tri-n-butyl phosphate in the Plutonium and Uranium Recovery by Extraction (PUREX) process.

17.
Chem Commun (Camb) ; (36): 3788-90, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16969458

RESUMEN

(NH4)14Na4[(Np3W4O15)(H2O)3(BiW9O33)3].62H2O (1) and (NH4)14.5Na3.5[(Np3W4O15)(H2O)3(SbW9O33)3].40.5H2O (2) each contain three neptunyl(v) moieties encapsulated within heteropolyoxotungstate frameworks in which axial {NpO2}+ oxygens form one face of a WO6 octahedron.

18.
Acta Crystallogr B ; 62(Pt 1): 68-85, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16434794

RESUMEN

The crystal structures of the title complexes were measured at several temperatures between room temperature and 100 K. Each sample shows reversible crystal-to-crystal phase transitions as the temperature is varied. The behaviour of [U(ReO4)4(TBPO)4] (I) and [Th(ReO4)4(TBPO)4] (II) (TBPO = tri-n-butylphosphine oxide) is very similar; at room temperature, crystals of (I) and (II) are isostructural, with space group I42m, and reducing the temperature to 100 K causes a lowering of the space-group symmetry to C-centred cells, space groups Cc for (I) and Cmc2(1) for (II). The variation of lattice symmetry of [Th(TcO4)4(TBPO)4] (III) was found to be somewhat different, with the body-centred cubic space group, I43m, occurring at 293 K, a reduction of symmetry at 230 K to the C-centred orthorhombic space group, Cmc2(1), and a further transition to the primitive orthorhombic space group, Pbc2(1), below 215 K. Elucidation of the correct space-group symmetry and the subsequent refinement was complicated in some cases by the twinning by pseudo-merohedry that arises from the lowering of the space-group symmetry, occurring as the temperature is reduced. All three of the crystal structures determined at room temperature have high atomic displacement parameters, particularly of the (n)Bu groups, and (III) shows disorder of some of the O atoms. The structures in the space group Cmc2(1), show some disorder of nBu groups, but are otherwise reasonably well ordered; the structures of (I) in Cc and (III) in Pbc2(1) are ordered, even to the ends of the alkyl chains. Inter-comparison of the structures measured below 293 K, using the program OFIT from the SHELXTL package, showed that generally, they are remarkably alike, with weighted r.m.s. deviations of the M, M' and P atoms of less than 0.1 A, as are the 293 K structures of (I) and (II) with their low-temperature counterparts. However, the structure of (III) measured in the space group Cmc2(1) is significantly different from both the structure of (III) at 293 K and that found below 215 K, with weighted r.m.s. deviations of the Th, Tc and P atoms of 0.40 and 0.37 A, respectively. An extensive network of weak intra- and intermolecular C-H...O hydrogen bonds found between the atoms of the nBu and [M'O4] groups probably influences the packing and the overall geometry of the molecules.

19.
Inorg Chem ; 44(21): 7606-15, 2005 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-16212387

RESUMEN

We report the synthesis, structural, and spectroscopic characterization of a series of uranium(IV)-perrhenato complexes. Three isostructural complexes with general formula [U(ReO4)4(L)4] (where L = tri-n-butylphosphine oxide/TBPO (2), triethyl phosphate/TEP (3), or tri-iso-butyl phosphate/TiBP (4)), have been synthesized, both through the photoreduction of ethanolic {UO2}2+ solutions and also via a novel U(IV) starting material, U(ReO4)4.5H2O (1). Compound 1 has also been used in the preparation of [U(ReO4)4(TPPO)3(CH3CN)].2CH3CN (5) and [U(ReO4)(DPPMO2)3(OH)][ReO4]2.2CH3CN (6), where TPPO represents triphenylphosphine oxide and DPPMO2 represents bis(diphenylphosphino)methane dioxide. All six complexes have been spectroscopically characterized using NMR, UV-vis-NIR, and IR techniques, with 2, 3, 5, and 6 also fully structurally characterized. The U atoms in compounds 2-6 all exhibit eight-coordinate geometry with up to four perrhenate groups in addition to three (DPPMO2 and TPPO) or four (TEP, TiBP, TBPO) coordinated organic ligands. In the case of compounds 5 and 6, the coordination of eight ligands to the U(IV) center is completed by the binding of a solvent molecule (CH3CN) and OH-, respectively. Solid-state physical analysis (elemental and thermogravimetric) and infrared spectroscopy are in agreement with the structural studies. The crystallographic data suggest that the strength of the U(IV)-O-donor ligand bonds decreases across the series R3PO > [ReO4]- > (RO)3PO. Solution-state IR and 31P NMR spectroscopy appear to be in agreement with these solid-state results.

20.
Inorg Chem ; 44(1): 2-4, 2005 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-15627351

RESUMEN

In situ EXAFS spectroscopic studies of uranium compounds in high temperature alkali chloride melts indicate the presence of oligomeric species. An investigation into UCl(3) and UCl(4) dissolved in LiCl reveals long range ordering of uranium atoms in the molten state which is not maintained on quenching. Studies of uranium dioxide dissolved in LiCl-KCl eutectic with HCl exhibit long range ordering in both molten and quenched states, and the EXAFS data can be modeled using multiple coordination shells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA