Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 122(3): 801-813, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35034204

RESUMEN

PURPOSE: We determined the effect of habitual endurance exercise and age on aortic pulse wave velocity (aPWV), augmentation pressure (AP) and systolic blood pressure (aSBP), with statistical adjustments of aPWV and AP for heart rate and aortic mean arterial pressure, when appropriate. Furthermore, we assessed whether muscle sympathetic nerve activity (MSNA) correlates with AP in young and middle-aged men. METHODS: Aortic PWV, AP, aortic blood pressure (applanation tonometry; SphygmoCor) and MSNA (peroneal microneurography) were recorded in 46 normotensive men who were either young or middle-aged and endurance-trained runners or recreationally active nonrunners (10 nonrunners and 13 runners within each age-group). Between-group differences and relationships between variables were assessed via ANOVA/ANCOVA and Pearson product-moment correlation coefficients, respectively. RESULTS: Adjusted aPWV and adjusted AP were similar between runners and nonrunners in both age groups (all, P > 0.05), but higher with age (all, P < 0.001), with a greater effect size for the age-related difference in AP in runners (Hedges' g, 3.6 vs 2.6). aSBP was lower in young (P = 0.009; g = 2.6), but not middle-aged (P = 0.341; g = 1.1), runners compared to nonrunners. MSNA burst frequency did not correlate with AP in either age group (young: r = 0.00, P = 0.994; middle-aged: r = - 0.11, P = 0.604). CONCLUSION: There is an age-dependent effect of habitual exercise on aortic haemodynamics, with lower aSBP in young runners compared to nonrunners only. Statistical adjustment of aPWV and AP markedly influenced the outcomes of this study, highlighting the importance of performing these analyses. Further, peripheral sympathetic vasomotor outflow and AP were not correlated in young or middle-aged normotensive men.


Asunto(s)
Aorta/fisiología , Presión Sanguínea/fisiología , Músculo Esquelético/inervación , Resistencia Física/fisiología , Sistema Nervioso Simpático/fisiología , Adulto , Factores de Edad , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad
2.
Exp Physiol ; 107(1): 6-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743381

RESUMEN

NEW FINDINGS: What is the central question of this study? Endurance athletes demonstrate altered regional right ventricular (RV) wall mechanics, characterized by lower basal deformation, in comparison to non-athletic control subjects at rest. We hypothesized that regional adaptations at the RV base reflect an enhanced functional reserve capacity in response to haemodynamic volume loading. What is the main finding and its importance? Free wall RV longitudinal strain is elevated in response to acute volume loading in both endurance athletes and control subjects. However, the RV basal segment longitudinal strain response to acute volume infusion is greater in endurance athletes. Our findings suggest that training-induced cardiac remodelling might involve region-specific adaptation in the RV functional response to volume manipulation. ABSTRACT: Eccentric remodelling of the right ventricle (RV) in response to increased blood volume and repetitive haemodynamic load during endurance exercise is well established. Structural remodelling is accompanied by decreased deformation at the base of the RV free wall, which might reflect an enhanced functional reserve capacity in response to haemodynamic perturbation. Therefore, in this study we examined the impact of acute blood volume expansion on RV wall mechanics in 16 young endurance-trained men (aged 24 ± 3 years) and 13 non-athletic male control subjects (aged 27 ± 5 years). Conventional echocardiographic parameters and the longitudinal strain and strain rate were quantified at the basal and apical levels of the RV free wall. Measurements were obtained at rest and after 7 ml/kg i.v. Gelofusine infusion, with and without a passive leg raise. After infusion, blood volume increased by 12 ± 4 and 14 ± 5% in endurance-trained individuals versus control subjects, respectively (P = 0.264). Both endurance-trained individuals (8 ± 10%) and control subjects (7 ± 9%) experienced an increase in free wall strain from baseline, which was also similar following leg raise (7 ± 10 and 6 ± 10%, respectively; P = 0.464). However, infusion evoked a greater increase in basal longitudinal strain in endurance-trained versus control subjects (16 ± 14 vs. 6 ± 11%; P = 0.048), which persisted after leg raise (16 ± 18 vs. 3 ± 11%; P = 0.032). Apical longitudinal strain and RV free wall strain rates were not different between groups and remained unchanged after infusion across all segments. Endurance training results in a greater contribution of longitudinal myocardial deformation at the base of the RV in response to a haemodynamic volume challenge, which might reflect a greater region-specific functional reserve capacity.


Asunto(s)
Entrenamiento Aeróbico , Ventrículos Cardíacos , Adaptación Fisiológica , Adulto , Humanos , Masculino , Resistencia Física/fisiología , Función Ventricular Derecha/fisiología , Adulto Joven
4.
Proc Natl Acad Sci U S A ; 116(40): 19905-19910, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527253

RESUMEN

Chimpanzees and gorillas, when not inactive, engage primarily in short bursts of resistance physical activity (RPA), such as climbing and fighting, that creates pressure stress on the cardiovascular system. In contrast, to initially hunt and gather and later to farm, it is thought that preindustrial human survival was dependent on lifelong moderate-intensity endurance physical activity (EPA), which creates a cardiovascular volume stress. Although derived musculoskeletal and thermoregulatory adaptations for EPA in humans have been documented, it is unknown if selection acted similarly on the heart. To test this hypothesis, we compared left ventricular (LV) structure and function across semiwild sanctuary chimpanzees, gorillas, and a sample of humans exposed to markedly different physical activity patterns. We show the human LV possesses derived features that help augment cardiac output (CO) thereby enabling EPA. However, the human LV also demonstrates phenotypic plasticity and, hence, variability, across a wide range of habitual physical activity. We show that the human LV's propensity to remodel differentially in response to chronic pressure or volume stimuli associated with intense RPA and EPA as well as physical inactivity represents an evolutionary trade-off with potential implications for contemporary cardiovascular health. Specifically, the human LV trades off pressure adaptations for volume capabilities and converges on a chimpanzee-like phenotype in response to physical inactivity or sustained pressure loading. Consequently, the derived LV and lifelong low blood pressure (BP) appear to be partly sustained by regular moderate-intensity EPA whose decline in postindustrial societies likely contributes to the modern epidemic of hypertensive heart disease.


Asunto(s)
Gasto Cardíaco , Ventrículos Cardíacos , Corazón/fisiología , Contracción Miocárdica , Resistencia Física , Presión , Adulto , Animales , Atletas , Presión Sanguínea , Gorilla gorilla , Cardiopatías , Hemodinámica , Humanos , Hipertensión , Masculino , Pan troglodytes , Fenotipo , Especificidad de la Especie , Adulto Joven
5.
J Appl Physiol (1985) ; 124(4): 813-820, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212672

RESUMEN

Exercise-induced cardiac remodeling (EICR) and the attendant myocardial adaptations characteristic of the athlete's heart may regress during periods of exercise reduction or abstinence. The time course and mechanisms underlying this reverse remodeling, specifically the impact of concomitant plasma volume (PV) contraction on cardiac chamber size, remain incompletely understood. We therefore studied recreational runners ( n = 21, age 34 ± 7 yr; 48% male) who completed an 18-wk training program (~7 h/wk) culminating in the 2016 Boston Marathon after which total exercise exposure was confined to <2 h/wk (no single session >1 h) for 8 wk. Cardiac structure and function, exercise capacity, and PV were assessed at peak fitness (10-14 days before) and at 4 wk and 8 wk postmarathon. Mixed linear modeling adjusting for age, sex, V̇o2peak, and marathon finish time was used to compare data across time points. Physiological detraining was evidenced by serial reductions in treadmill performance. Two distinct phases of myocardial remodeling and hematological adaptation were observed. After 4 wk of detraining, there were significant reductions in PV (Δ -6.0%, P < 0.01), left ventricular (LV) wall thickness (Δ -8.1%, <0.05), LV mass (Δ -10.3%, P < 0.001), and right atrial area (Δ -8.2%, P < 0.001). After 8 wk of detraining, there was a significant reduction in right ventricle chamber size (end-diastolic area Δ = -8.0%, P < 0.05) without further concomitant reductions in PV or LV wall thickness. Abrupt reductions in exercise training stimulus result in a structure-specific time course of reverse cardiac remodeling that occurs largely independently of PV contraction. NEW & NOTEWORTHY Significant reverse cardiac remodeling, previously documented among competitive athletes, extends to recreational runners and occurs with a distinct time course. Initial reductions in plasma volume and left ventricular (LV) mass, driven by reductions in wall thickness, are followed by contraction of the right ventricle. Consistent with data from competitive athletes, LV chamber volumes appear less responsive to detraining and may be a more permanent adaptation to sport.


Asunto(s)
Volumen Sanguíneo , Capacidad Cardiovascular/fisiología , Remodelación Ventricular , Adaptación Fisiológica , Adulto , Femenino , Humanos , Estudios Longitudinales , Masculino , Estudios Prospectivos
6.
Am J Vet Res ; 76(8): 688-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26207966

RESUMEN

OBJECTIVE: To generate reference intervals for ECG variables in clinically normal chimpanzees (Pan troglodytes). ANIMALS: 100 clinically normal (51 young [< 10 years old] and 49 adult [≥ 10 years old]) wild-born chimpanzees. PROCEDURES: Electrocardiograms collected between 2009 and 2013 at the Tchimpounga Chimpanzee Rehabilitation Centre were assessed to determine heart rate, PR interval, QRS duration, QT interval, QRS axis, P axis, and T axis. Electrocardiographic characteristics for left ventricular hypertrophy (LVH) and morphology of the ST segment, T wave, and QRS complex were identified. Reference intervals for young and old animals were calculated as mean ± 1.96•SD for normally distributed data and as 5th to 95th percentiles for data not normally distributed. Differences between age groups were assessed by use of unpaired Student t tests. RESULTS Reference intervals were generated for young and adult wild-born chimpanzees. Most animals had sinus rhythm with small or normal P wave morphology; 24 of 51 (47%) young chimpanzees and 30 of 49 (61%) adult chimpanzees had evidence of LVH as determined on the basis of criteria for humans. CONCLUSIONS AND CLINICAL RELEVANCE: Cardiac disease has been implicated as the major cause of death in captive chimpanzees. Species-specific ECG reference intervals for chimpanzees may aid in the diagnosis and treatment of animals with, or at risk of developing, heart disease. Chimpanzees with ECG characteristics outside of these intervals should be considered for follow-up assessment and regular cardiac monitoring.


Asunto(s)
Electrocardiografía/veterinaria , Sistema de Conducción Cardíaco/fisiología , Pan troglodytes/fisiología , Animales , Electrocardiografía/métodos , Femenino , Masculino , Valores de Referencia
7.
Med Sci Sports Exerc ; 44(2): 323-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21720277

RESUMEN

PURPOSE: The purposes of this study were to describe resting cardiopulmonary function in highly trained athletes with cervical spinal cord injury (SCI) and to compare the data with able-bodied (AB) control subjects. METHODS: Twelve Paralympic wheelchair rugby players with cervical SCI (injury level = C5-C7) and 12 AB controls matched for age, stature, and body mass were assessed for pulmonary function using spirometry, body plethysmography, and maximal inspiratory and expiratory mouth pressures; diaphragm function using magnetic stimulation of the phrenic nerves; and cardiac function using transthoracic echocardiography. RESULTS: Total lung capacity, vital capacity, inspiratory reserve volume, and expiratory reserve volume were lower in SCI compared with AB (P < 0.01), whereas residual volume was elevated in SCI (P = 0.022). Airway resistance and maximal inspiratory mouth pressure were not different between groups (P > 0.41), whereas maximal expiratory mouth pressure, maximal transdiaphragmatic pressure, and twitch transdiaphragmatic pressure were lower in SCI (P < 0.01). Percent predicted total lung capacity was significantly correlated with maximal transdiaphragmatic pressure in SCI (r = 0.74), suggesting that the pulmonary restriction was a result of diaphragm weakness. Left ventricular mass, ejection fraction, stroke volume, and cardiac output were lower in SCI (P < 0.04), but early and late filling velocities during diastole were not different between groups (P > 0.05). CONCLUSIONS: Highly trained athletes with cervical SCI exhibit a restrictive pulmonary defect, weakness of the expiratory and diaphragm muscles, atrophy of the heart, and reduced systolic cardiac function.


Asunto(s)
Atletas , Corazón/fisiología , Pulmón/fisiología , Descanso/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Estatura/fisiología , Peso Corporal/fisiología , Diafragma/fisiopatología , Ecocardiografía , Fútbol Americano/fisiología , Corazón/anatomía & histología , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Resistencia Física/fisiología , Entrenamiento de Fuerza , Pruebas de Función Respiratoria , Volumen Sistólico/fisiología , Adulto Joven
8.
Respir Physiol Neurobiol ; 180(2-3): 275-82, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22186114

RESUMEN

We asked whether abdominal binding improves cardiorespiratory function in individuals with cervical spinal cord injury (SCI). 13 participants with chronic SCI (C(5)-C(7)) and 8 able-bodied controls were exposed to varying degrees of elastic abdominal compression (unbound [UB], loose-bound [LB], and tight-bound [TB]) while seated. In SCI, TB increased vital capacity (14%), expiratory flow throughout vital capacity (15%), inspiratory capacity (21%), and maximal expiratory mouth pressure (25%). In contrast, TB reduced residual volume (-34%) and functional residual capacity (-23%). TB increased tidal and twitch transdiaphragmatic pressures (∼45%), primarily by increasing the gastric pressure contributions. TB increased cardiac output (28%), systolic mitral annular velocity (22%), and late-diastolic mitral annular velocity (50%). Selected measures of cardiorespiratory function improved with LB, but the changes were less compared to TB. In able-bodied, changes were inconsistent and always less than in SCI. In conclusion, abdominal-binding improved cardiorespiratory function in low-cervical SCI by optimising operating lung volumes, increasing expiratory flow, enhancing diaphragmatic pressure production, and improving left-ventricular function.


Asunto(s)
Pared Abdominal/fisiopatología , Vendajes , Hemodinámica/fisiología , Mecánica Respiratoria/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Pared Abdominal/diagnóstico por imagen , Adulto , Gasto Cardíaco/fisiología , Vértebras Cervicales/lesiones , Diafragma/fisiología , Electrocardiografía , Femenino , Capacidad Residual Funcional/fisiología , Pruebas de Función Cardíaca , Humanos , Masculino , Válvula Mitral/fisiología , Ápice del Flujo Espiratorio/fisiología , Pruebas de Función Respiratoria , Traumatismos de la Médula Espinal/diagnóstico por imagen , Estómago/fisiología , Ultrasonografía , Capacidad Vital/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...