Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36298090

RESUMEN

Multiphase flows are encountered in various industries, and the Coriolis flowmeter (CFM) is considered a high potential flowmeter for the metering of these flows. However, the decoupling effect and asymmetrical gas distribution in a CFM might decrease the accuracy of its multiphase flow metering The asymmetry of gas distribution in a CFM and its influence on the metering accuracy have only been qualitatively investigated in a few studies. The present paper quantitatively describes the gas distribution asymmetry in several CFMs under different flow conditions by numerical simulation. The simulation methodology is developed and validated by a results comparison with a conducted experiment and published data for bubbly, stratified and transitional flow regimes. U-shaped and triangle-shaped CFMs of different diameters are investigated at different gas volume fractions and flow rates. It is shown that the increase in the gas volume fraction and the reduction in the mixture flow rate lead to the increase in the gas distribution asymmetry. The strong correlation between the gas distribution asymmetry and the experimentally observed CFM error is demonstrated. The correction of the CFM error is proposed based on this correlation allowing the metering error to be decreased from 34% to 10% for the investigated conditions.

2.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884108

RESUMEN

Numerical simulation is a widely used tool for Coriolis flowmeter (CFM) operation analysis. However, there is a lack of experimentally validated methodologies for the CFM simulation. Moreover, there is no consensus on suitable turbulence models and configuration simplifications. The present study intends to address these questions in a framework of a fluid-solid interaction simulation methodology by coupling the finite volume method and finite element method for fluid and solid domains, respectively. The Reynolds stresses (RSM) and eddy viscosity-based turbulence models are explored and compared for CFM simulations. The effects of different configuration simplifications are investigated. It is demonstrated that the RSM model is favorable for the CFM operation simulations. It is also shown that the configuration simplifications should not include the braces neglect or the equivalent flowmeter tube length assumption. The simulation results are validated by earlier experimental data, showing a less than 5% discrepancy. The proposed methodology will increase the confidence in CFM operation simulations and consequently provide the foundation for further studies of flowmeter usage in various fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA