Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Prehosp Emerg Care ; : 1-27, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739864

RESUMEN

INTRODUCTION: Evidence suggests that Extracorporeal Cardiopulmonary Resuscitation (ECPR) can improve survival rates for nontraumatic out-of-hospital cardiac arrest (OHCA). However, when ECPR is indicated over 50% of potential candidates are unable to qualify in the current hospital-based system due to geographic limitations. This study employs a Geographic Information System (GIS) model to estimate the number of ECPR eligible patients within the United States in the current hospital-based system, a prehospital ECPR ground-based system, and a prehospital ECPR Helicopter Emergency Medical Services (HEMS)-based system. METHODS: We constructed a GIS model to estimate ground and helicopter transport times. Time-dependent rates of ECPR eligibility were derived from the Resuscitation Outcome Consortium (ROC) database, while the Cardiac Arrest Registry to Enhance Survival (CARES) registry determined the number of OHCA patients meeting ECPR criteria within designated transportation times. Emergency Medical Services (EMS) response time, ECPR candidacy determination time, and on-scene time were modeled based on data from the EROCA trial. The combined model was used to estimate the total ECPR eligibility in each system. RESULTS: The CARES registry recorded 736,066 OHCA patients from 2013 to 2021. After applying clinical criteria, 24,661 (3.4%) ECPR-indicated OHCA were identified. When considering overall ECPR eligibility within 45 minutes from OHCA to initiation, only 11.76% of OHCA where ECPR was indicated were eligible in the current hospital-based system. The prehospital ECPR HEMS-based system exhibited a four-fold increase in ECPR eligibility (49.3%), while the prehospital ground-based system showed a more than two-fold increase (28.4%). CONCLUSIONS: The study demonstrates a two-fold increase in ECPR eligibility for a field-deployable ground-based system and a four-fold increase for a prehospital ECPR HEMS-based system compared to the current hospital-based OHCA system. This novel GIS model can inform future ECPR implementation strategies, optimizing systems of care.

2.
Resuscitation ; 180: 111-120, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36183812

RESUMEN

BACKGROUND: Recent evidence suggest that extracorporeal cardiopulmonary resuscitation (ECPR) may improve survival rates for nontraumatic out-of-hospital cardiac arrest (OHCA). Eligibility criteria for ECPR are often based on patient age, clinical variables, and facility capabilities. Expanding access to ECPR across the U.S. requires a better understanding of how these factors interact with transport time to ECPR centers. METHODS: We constructed a Geographic Information System (GIS) model to estimate the number of ECPR candidates in the U.S. We utilized a Resuscitation Outcome Consortium (ROC) database to model time-dependent rates of ECPR eligibility and the Cardiac Arrest Registry to Enhance Survival (CARES) registry to determine the total number of OHCA patients who meet pre-specified ECPR criteria within designated transportation times. The combined model was used to estimate the total number of ECPR candidates. RESULTS: There were 588,203 OHCA patients in the CARES registry from 2013 to 2020. After applying clinical eligibility criteria, 22,104 (3.76%) OHCA patients were deemed eligible for ECPR. The rate of ROSC increased with longer resuscitation time, which resulted in fewer ECPR candidates. The proportion of OHCA patients eligible for ECPR increased with older age cutoffs. Only 1.68% (9,889/588,203) of OHCA patients in the U.S. were eligible for ECPR based on a 45-minute transportation time to an ECMO-ready center model. CONCLUSIONS: Less than 2% of OHCA patients are eligible for ECPR in the U.S. GIS models can identify the impact of clinical criteria, transportation time, and hospital capabilities on ECPR eligibility to inform future implementation strategies.

3.
Air Med J ; 41(1): 114-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35248330

RESUMEN

Cardiogenic shock (CS) represents a spectrum of hemodynamic deficits in which the cardiac output is insufficient to provide adequate tissue perfusion. The Impella (Abiomed Inc, Danvers, MA) device, a contemporary percutaneous ventricular support, is most often indicated for classic, deteriorating, and extremis Society for Coronary Angiography and Intervention stages of CS, which describe CS that is not responsive to optimal medical management and conventional treatment measures. Impella devices are an evolving field of mechanical support that is used with increasing frequency. Critical care transport medicine crews are required to transport patient support by the Impella device with increasing frequency. It is important that critical care transport medicine crews are familiar with the Impella device and are able to troubleshoot complications that may arise in the transport environment. This article reviews many aspects of the Impella device critical to the transport of this complex patient population.


Asunto(s)
Corazón Auxiliar , Cuidados Críticos , Corazón Auxiliar/efectos adversos , Hemodinámica/fisiología , Humanos , Choque Cardiogénico/etiología , Choque Cardiogénico/terapia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...