Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1656-1672, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39043182

RESUMEN

Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.


Asunto(s)
Síndrome de Alagille , Proteína Jagged-1 , Mutación Missense , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Exones/genética
2.
Genome Biol Evol ; 16(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302106

RESUMEN

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.


Asunto(s)
Antígenos HLA-DQ , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Desequilibrio de Ligamiento , Teorema de Bayes , Haplotipos , Antígenos HLA-DQ/genética
3.
Genetics ; 221(2)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35385101

RESUMEN

Genomic regions subject to purifying selection are more likely to carry disease-causing mutations than regions not under selection. Cross species conservation is often used to identify such regions but with limited resolution to detect selection on short evolutionary timescales such as that occurring in only one species. In contrast, genetic intolerance looks for depletion of variation relative to expectation within a species, allowing species-specific features to be identified. When estimating the intolerance of noncoding sequence, methods strongly leverage variant frequency distributions. As the expected distributions depend on ancestry, if not properly controlled for, ancestral population source may obfuscate signals of selection. We demonstrate that properly incorporating ancestry in intolerance estimation greatly improved variant classification. We provide a genome-wide intolerance map that is conditional on ancestry and likely to be particularly valuable for variant prioritization.


Asunto(s)
Genoma Humano , Genómica , Evolución Biológica , Genética de Población , Humanos , Selección Genética
5.
Sci Rep ; 10(1): 19530, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177547

RESUMEN

Over the past decades, one main issue that has emerged in ecological and environmental research is how losses in biodiversity influence ecosystem dynamics and functioning, and consequently human society. Although biodiversity is a common indicator of ecosystem functioning, it is difficult to measure biodiversity in microbial communities exposed to subtle or chronic environmental perturbations. Consequently, there is a need for alternative bioindicators to detect, measure, and monitor gradual changes in microbial communities against these slight, chronic, and continuous perturbations. In this study, microbial networks before and after subtle perturbations by adding S. acidaminiphila showed diverse topological niches and 4-node motifs in which microbes with co-occurrence patterns played the central roles in regulating and adjusting the intertwined relationships among microorganisms in response to the subtle environmental changes. This study demonstrates that microbial networks are a good bioindicator for chronic perturbation and should be applied in a variety of ecological investigations.


Asunto(s)
Reactores Biológicos/microbiología , Microbiota/fisiología , Stenotrophomonas , Anaerobiosis , Biodiversidad , Análisis de la Demanda Biológica de Oxígeno , Biomarcadores Ambientales , Metano/biosíntesis , Microbiota/genética , Modelos Biológicos , ARN Ribosómico 16S , Stenotrophomonas/fisiología
6.
BMC Microbiol ; 20(1): 295, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32998681

RESUMEN

BACKGROUND: Neuropathic pain is an abnormally increased sensitivity to pain, especially from mechanical or thermal stimuli. To date, the current pharmacological treatments for neuropathic pain are still unsatisfactory. The gut microbiota reportedly plays important roles in inducing neuropathic pain, so probiotics have also been used to treat it. However, the underlying questions around the interactions in and stability of the gut microbiota in a spared nerve injury-induced neuropathic pain model and the key microbes (i.e., the microbes that play critical roles) involved have not been answered. We collected 66 fecal samples over 2 weeks (three mice and 11 time points in spared nerve injury-induced neuropathic pain and Sham groups). The 16S rRNA gene was polymerase chain reaction amplified, sequenced on a MiSeq platform, and analyzed using a MOTHUR- UPARSE pipeline. RESULTS: Here we show that spared nerve injury-induced neuropathic pain alters gut microbial diversity in mice. We successfully constructed reliable microbial interaction networks using the Metagenomic Microbial Interaction Simulator (MetaMIS) and analyzed these networks based on 177,147 simulations. Interestingly, at a higher resolution, our results showed that spared nerve injury-induced neuropathic pain altered both the stability of the microbial community and the key microbes in a gut micro-ecosystem. Oscillospira, which was classified as a low-abundance and core microbe, was identified as the key microbe in the Sham group, whereas Staphylococcus, classified as a rare and non-core microbe, was identified as the key microbe in the spared nerve injury-induced neuropathic pain group. CONCLUSIONS: In summary, our results provide novel experimental evidence that spared nerve injury-induced neuropathic pain reshapes gut microbial diversity, and alters the stability and key microbes in the gut.


Asunto(s)
ADN Bacteriano/genética , Microbioma Gastrointestinal/genética , Metagenoma , Interacciones Microbianas/genética , Neuralgia/microbiología , Animales , Clostridiales/genética , Clostridiales/aislamiento & purificación , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillaceae/genética , Lactobacillaceae/aislamiento & purificación , Ratones , Ratones Endogámicos C57BL , Neuralgia/fisiopatología , Nervio Peroneo/lesiones , ARN Ribosómico 16S/genética , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Nervio Sural/lesiones
7.
Microbiome ; 8(1): 129, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917256

RESUMEN

BACKGROUND: Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. RESULTS: Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. CONCLUSIONS: Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.


Asunto(s)
Envejecimiento , Animales Recién Nacidos/microbiología , Pinzones/microbiología , Microbioma Gastrointestinal , Comportamiento de Nidificación , Animales , Femenino , Microbioma Gastrointestinal/genética , Masculino , ARN Ribosómico 16S/genética
8.
Sci Rep ; 9(1): 6560, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024021

RESUMEN

Microbial communities are key drivers of ecosystem processes, but their behavior in disturbed environments is difficult to measure. How microbial community composition and function respond disturbances is a common challenge in biomedical, environmental, agricultural, and bioenergy research. A novel way to solve this problem is to use a systems-level perspective and describe microbial communities as networks. Based on a mesophilic anaerobic digestion system of swine manure as a tool, we propose a simple framework to investigate changes in microbial communities via compositions, metabolic pathways, genomic properties and interspecies relationships in response to a long-term temperature disturbance. After temperature disturbance, microbial communities tend towards a competitive interaction network with higher GC content and larger genome size. Based on microbial interaction networks, communities responded to the disturbance by showing a transition from acetotrophic (Methanotrichaceae and Methanosarcinaceae) to methylotrophic methanogens (Methanomassiliicoccaceae and Methanobacteriaceae) and a fluctuation in rare biosphere taxa. To conclude, this study may be important for exploring the dynamic relationships between disturbance and microbial communities as a whole, as well as for providing researchers with a better understanding of how changes in microbial communities relate to ecological processes.


Asunto(s)
Microbiota/fisiología , Anaerobiosis/genética , Anaerobiosis/fisiología , Animales , Composición de Base/genética , Composición de Base/fisiología , Reactores Biológicos/microbiología , Genoma Bacteriano/genética , Methanobacteriaceae/genética , Methanobacteriaceae/fisiología , Methanomicrobiaceae/genética , Methanomicrobiaceae/fisiología , ARN Ribosómico 16S/genética , Porcinos , Temperatura
9.
PLoS One ; 12(7): e0181427, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28715471

RESUMEN

Growing evidence points out that the capacity of organisms to acclimate or adapt to new habitat conditions basically depends on their phenomic plasticity attributes, of which their gut commensal microbiota might be an essential impact factor. Especially in aquatic organisms, which are in direct and continual contact with the aquatic environment, the complex and dynamic microbiota have significant effects on health and development. However, an understanding of the relative contribution of internal sorting (host genetic) and colonization (environmental) processes is still unclear. To understand how microbial communities differ in response to rapid environmental change, we surveyed and studied the environmental and gut microbiota of native and habitat-exchanged shrimp (Macrobrachium nipponense) using 16S rRNA amplicon sequencing on the Illumina MiSeq platform. Corresponding with microbial diversity of their living water areas, the divergence in gut microbes of lake-to-river shrimp (CK) increased, while that of river-to-lake shrimp (KC) decreased. Importantly, among the candidate environment specific gut microbes in habitat-exchanged shrimp, over half of reads were associated with the indigenous bacteria in native shrimp gut, yet more candidates presented in CK may reflect the complexity of new environment. Our results suggest that shrimp gut microbiota has high plasticity when its host faces environmental changes, even over short timescales. Further, the changes in external environment might influence the gut microbiome not just by providing environment-associated microbes directly, but also by interfering with the composition of indigenous gut bacteria indirectly.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Lagos , Ríos , Animales , Secuencia de Bases , Microbioma Gastrointestinal/genética , Palaemonidae/genética , ARN Ribosómico 16S/genética , Alineación de Secuencia , Factores de Tiempo
10.
PLoS One ; 12(7): e0181395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28732056

RESUMEN

Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a "black box." We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.


Asunto(s)
Bacterias Anaerobias/fisiología , Reactores Biológicos , Estiércol/microbiología , Interacciones Microbianas , Microbiota/fisiología , ARN Ribosómico 16S/genética , Anaerobiosis , Animales , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Biocombustibles , Heces/microbiología , Microbiota/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Porcinos , Temperatura , Residuos
11.
Front Microbiol ; 8: 525, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424669

RESUMEN

The concerted activity of intestinal microbes is crucial to the health and development of their host organisms. Investigation of microbial interactions in the gut should deepen our understanding of how these micro-ecosystems function. Due to advances in Next Generation Sequencing (NGS) technologies, various bioinformatic strategies have been proposed to investigate these microbial interactions. However, due to the complexity of the intestinal microbial community and difficulties in monitoring their interactions, at present there is a gap between the theory and biological application. In order to construct and validate microbial relationships, we first induce a community shift from simple to complex by manipulating artificial hibernation (AH) in the treefrog Polypedates megacephalus. To monitor community growth and microbial interactions, we further performed a time-course screen using a 16S rRNA amplicon approach and a Lotka-Volterra model. Lotka-Volterra models, also known as predator-prey equations, predict the dynamics of microbial communities and how communities are structured and sustained. An interaction network of gut microbiota at the genus level in the treefrog was constructed using Metagenomic Microbial Interaction Simulator (MetaMIS) package. The interaction network obtained had 1,568 commensal, 1,737 amensal, 3,777 mutual, and 3,232 competitive relationships, e.g., Lactococcus garvieae has a commensal relationship with Corynebacterium variabile. To validate the interacting relationships, the gut microbe composition was analyzed after probiotic trials using single strain (L. garvieae, C. variabile, and Bacillus coagulans, respectively) and a combination of L. garvieae, C. variabile, and B. coagulans, because of the cooperative relationship among their respective genera identified in the interaction network. After a 2 week trial, we found via 16S rRNA amplicon analysis that the combination of cooperative microbes yielded significantly higher probiotic concentrations than single strains, and the immune response (interleukin-10 expression) also significantly changed in a manner consistent with improved probiotic effects. By taking advantage of microbial community shift from simple to complex, we thus constructed a reliable microbial interaction network, and validated it using probiotic strains as a test system.

12.
BMC Bioinformatics ; 17(1): 488, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887570

RESUMEN

BACKGROUND: The complexity and dynamics of microbial communities are major factors in the ecology of a system. With the NGS technique, metagenomics data provides a new way to explore microbial interactions. Lotka-Volterra models, which have been widely used to infer animal interactions in dynamic systems, have recently been applied to the analysis of metagenomic data. RESULTS: In this paper, we present the Lotka-Volterra model based tool, the Metagenomic Microbial Interacticon Simulator (MetaMIS), which is designed to analyze the time series data of microbial community profiles. MetaMIS first infers underlying microbial interactions from abundance tables for operational taxonomic units (OTUs) and then interprets interaction networks using the Lotka-Volterra model. We also embed a Bray-Curtis dissimilarity method in MetaMIS in order to evaluate the similarity to biological reality. MetaMIS is designed to tolerate a high level of missing data, and can estimate interaction information without the influence of rare microbes. For each interaction network, MetaMIS systematically examines interaction patterns (such as mutualism or competition) and refines the biotic role within microbes. As a case study, we collect a human male fecal microbiome and show that Micrococcaceae, a relatively low abundance OTU, is highly connected with 13 dominant OTUs and seems to play a critical role. MetaMIS is able to organize multiple interaction networks into a consensus network for comparative studies; thus we as a case study have also identified a consensus interaction network between female and male fecal microbiomes. CONCLUSIONS: MetaMIS provides an efficient and user-friendly platform that may reveal new insights into metagenomics data. MetaMIS is freely available at: https://sourceforge.net/projects/metamis/ .


Asunto(s)
Algoritmos , Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Heces/microbiología , Metagenoma/genética , Microbiota/genética , Ecología , Femenino , Humanos , Masculino , Interacciones Microbianas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA