Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(18): 27259-27272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507165

RESUMEN

Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.


Asunto(s)
Antibacterianos , Estiércol , Microbiología del Suelo , Suelo , Animales , Bovinos , Antibacterianos/farmacología , Suelo/química , Microbiota/efectos de los fármacos
2.
Ecol Lett ; 22(12): 2067-2076, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31595680

RESUMEN

Microbial communities drive soil ecosystem function but are also susceptible to environmental disturbances. We investigated whether exposure to manure sourced from cattle either administered or not administered antibiotics affected microbially mediated terrestrial ecosystem function. We quantified changes in microbial community composition via amplicon sequencing, and terrestrial elemental cycling via a stable isotope pulse-chase. Exposure to manure from antibiotic-treated cattle caused: (i) changes in microbial community structure; and (ii) alterations in elemental cycling throughout the terrestrial system. This exposure caused changes in fungal : bacterial ratios, as well as changes in bacterial community structure. Additionally, exposure to manure from cattle treated with pirlimycin resulted in an approximate two-fold increase in ecosystem respiration of recently fixed-carbon, and a greater proportion of recently added nitrogen in plant and soil pools compared to the control manure. Manure from antibiotic-treated cattle therefore affects terrestrial ecosystem function via the soil microbiome, causing decreased ecosystem carbon use efficiency, and altered nitrogen cycling.


Asunto(s)
Ecosistema , Estiércol , Animales , Antibacterianos , Carbono , Bovinos , Ganado , Nitrógeno , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...