Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(2): 832-841, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33351877

RESUMEN

van der Waals ferromagnets have gained significant interest due to their unique ability to provide magnetic response even at the level of a few monolayers. Particularly in combination with 2D semiconductors, such as the transition metal dichalcogenide WSe2, one can create heterostructures that feature unique magneto-optical response in the exciton emission through the magnetic proximity effect. Here we use 0D quantum emitters in WSe2 to probe for the ferromagnetic response in heterostructures with Fe3GT and Fe5GT ferromagnets through an all-optical read-out technique that does not require electrodes. The spectrally narrow spin-doublet of the WSe2 quantum emitters allowed to fully resolve the hysteretic magneto-response in the exciton emission, revealing the characteristic signature of both ferro- and antiferromagnetic proximity coupling that originates from the interplay among Fe3GT or Fe5GT, a thin surface oxide, and the spin doublets of the quantum emitters. Our work highlights the utility of 0D quantum emitters for probing interface magnetic dipoles in vdW heterostructures with high precision. The observed hysteretic magneto response in the exciton emission of quantum emitters adds further new degrees of freedom for spin and g-factor manipulation of quantum states.

2.
Nanotechnology ; 32(9)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33232946

RESUMEN

Doping of two-dimensional (2D) semiconductors has been intensively studied toward modulating their electrical, optical, and magnetic properties. While ferromagnetic 2D semiconductors hold promise for future spintronics and valleytronics, the origin of ferromagnetism in 2D materials remains unclear. Here, we show that substitutional Fe-doping of MoS2and WS2monolayers induce different magnetic properties. The Fe-doped monolayers are directly synthesized via chemical vapor deposition. In both cases, Fe substitutional doping is successfully achieved, as confirmed using scanning transmission electron microscopy. While both Fe:MoS2and Fe:WS2show PL quenching and n-type doping, Fe dopants in WS2monolayers are found to assume deep-level trap states, in contrast to the case of Fe:MoS2, where the states are found to be shallow. Usingµm- and mm-precision local NV-magnetometry and superconducting quantum interference device, we discover that, unlike MoS2monolayers, WS2monolayers do not show a magnetic phase transition to ferromagnetism upon Fe-doping. The absence of ferromagnetism in Fe:WS2is corroborated using density functional theory calculations.

3.
Nat Commun ; 11(1): 5502, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127925

RESUMEN

Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holes in a solid state platform.

4.
Nat Commun ; 11(1): 2034, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341412

RESUMEN

Two-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS2 monolayers in the chemical vapor deposition growth. The iron atoms substitute molybdenum sites in MoS2 crystals, as confirmed by transmission electron microscopy and Raman signatures. We uncover an Fe-related spectral transition of Fe:MoS2 monolayers that appears at 2.28 eV above the pristine bandgap and displays pronounced ferromagnetic hysteresis. The microscopic origin is further corroborated by density functional theory calculations of dipole-allowed transitions in Fe:MoS2. Using spatially integrating magnetization measurements and spatially resolving nitrogen-vacancy center magnetometry, we show that Fe:MoS2 monolayers remain magnetized even at ambient conditions, manifesting ferromagnetism at room temperature.

5.
Nano Lett ; 19(10): 7301-7308, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31550164

RESUMEN

The realization of on-chip quantum networks requires tunable quantum states to encode information carriers on them. We show that Cr2Ge2Te6 (CGT) as a van der Waals ferromagnet can enable magnetic proximity coupling to site-controlled quantum emitters in WSe2, giving rise to ultrahigh exciton g factors up to 20 ± 1. By comparing the same site-controlled quantum emitter before and after ferromagnetic proximity coupling, we also demonstrate a technique to directly measure the resulting magnetic exchange field (MEF) strength. Experimentally determined values of MEF up to 1.2 ± 0.2 meV in the saturation regime approach the theoretical limit of 2.1 meV that was determined from density functional theory calculations of the CGT/WSe2 heterostructure. Our work extends the on-chip control of magneto-optical properties of excitons via van der Waals heterostructures to solid-state quantum emitters.

6.
ACS Nano ; 13(6): 6992-6997, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31141657

RESUMEN

The bright and stable single-photon emission under room temperature conditions from color centers in hexagonal boron nitride (hBN) is considered as one of the most promising quantum light sources for quantum cryptography as well as spin-based qubits, similar to recent advances in nitrogen-vacancy centers in diamond. To this end, integration with cavity or waveguide modes is required to enable ideally lossless transduction of quantum light states. Here, we demonstrate a scheme to embed hBN quantum emitters into on-chip arrays of metallo-dielectric antennas that provides near unity light collection efficiencies with experimental values up to 98%, i.e. a 7-fold enhancement compared to bare quantum emitters. Room-temperature quantum light emission in the 700 nm band is characterized with single-photon emission rates into the first lens up to 44 MHz under continuous excitation and up to 10 MHz under 80 MHz pulsed excitation (0.13 photons per trigger pulse) into a narrow output cone (±15°) that facilitates fiber butt-coupling. We furthermore provide here a direct measurement of the quantum yield under pulsed excitation with values of 6-12% for hBN nanoflakes. Our demonstrated scheme could enable low loss spin-photon interfaces on a chip.

7.
Nanoscale ; 10(26): 12631-12638, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29943788

RESUMEN

Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising route to enhance the quantum yield of exciton emission and can lead to single-photon emission at room temperature. However, the spectral linewidth of the defect-related E11* emission remains rather broad. Here, we systematically investigate the low-temperature exciton emission of individual SWCNTs that have been dispersed with sodium-deoxycholate (DOC) and polyfluorene (PFO-BPy), are grown by laser vaporization (LV) or by CoMoCat techniques and are functionalized with oxygen as well as 3,5-dichlorobenzene groups. The E11 excitons in oxygen-functionalized SWCNTs remain rather broad with up to 10 meV linewidth while exciton emission from 3,5-dichlorobenzene functionalized SWCNTs is found to be about one order of magnitude narrower. In all cases, wrapping with PFO-BPy provides significantly better protection against pump induced dephasing compared to DOC. To further study the influence of exciton localization on pump-induced dephasing, we have embedded the functionalized SWCNTs into metallo-dielectric antenna cavities to maximize light collection. We show that 0D excitons attributed to the E11* emission of 3,5-dichlorobenzene quantum defects of LV-grown SWCNTs can display near resolution-limited linewidths down to 35 µeV. Interestingly, these 0D excitons give rise to a 3-fold suppressed pump-induced exciton dephasing compared to the E11 excitons in the same SWCNT. These findings provide a foundation to build a unified description of the emergence of novel optical behavior from the interplay of covalently introduced defects, dispersants, and exciton confinement in SWCNTs and might further lead to the realization of indistinguishable photons from carbon nanotubes.

8.
Nanoscale ; 10(17): 8320-8328, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29687821

RESUMEN

Metal-halide perovskites are promising candidates to advance optoelectronic devices but are known to suffer from rapid material degradation. Here we demonstrate that nanoconfinement is an effective strategy for the long-term stabilization of metal-halide perovskite MAPbI3 crystals against humidity-induced degradation and temperature-induced polymorph transitions. Two-dimensional X-ray diffraction patterns of MAPbI3 films reveal an unprecedented air-stability of up to 594 days in non-chemically modified, non-passivated MAPbI3 films deposited on substrates imposing complete 2D confinement on the tens of nanometers length scale. Temperature-dependent X-ray diffraction analysis and optical spectroscopy further reveal the suppression of temperature-dependent phase transitions in nanoconfined MAPbI3 crystals. Most notably, the high-temperature cubic phase of MAPbI3, typically stable at temperatures above 327 K, remains present until a temperature of 170 K when the perovskite crystals are nanoconfined within the 100 nm diameter pores of anodized aluminum oxide templates. Photoluminescence mapping confirms that nanoconfined MAPbI3 crystals exhibit spatial uniformity on the tens of microns length scale, suggesting that nanoconfinement is an effective strategy for the formation of high-quality, stable MAPbI3 crystals across large areas.

9.
Nat Commun ; 8(1): 1413, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123125

RESUMEN

Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore, the measured ultra-narrow exciton linewidth (18 µeV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. To demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.

10.
ACS Nano ; 11(11): 10785-10796, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-28958146

RESUMEN

Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. We observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral line width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 µeV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. These findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.

11.
ACS Nano ; 11(7): 6652-6660, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28521091

RESUMEN

Hexagonal boron nitride (hBN) is an emerging material in nanophotonics and an attractive host for color centers for quantum photonic devices. Here, we show that optical emission from individual quantum emitters in hBN is spatially correlated with structural defects and can display ultranarrow zero-phonon line width down to 45 µeV if spectral diffusion is effectively eliminated by proper surface passivation. We demonstrate that undesired emission into phonon sidebands is largely absent for this type of emitter. In addition, magneto-optical characterization reveals cycling optical transitions with an upper bound for the g-factor of 0.2 ± 0.2. Spin-polarized density functional theory calculations predict possible commensurate transitions between like-spin electron states, which are in excellent agreement with the experimental nonmagnetic defect center emission. Our results constitute a step toward the realization of narrowband quantum light sources and the development of spin-photon interfaces within 2D materials for future chip-scale quantum networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...