Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oceanography (Wash D C) ; 32(2): 98-107, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32704223

RESUMEN

An autonomous Lagrangian float equipped with a high-resolution acoustic Doppler current profiler observed the evolution of upper-ocean stratification and velocity in the Eastern Pacific Fresh Pool for over 100 days in August-November 2016. Although convective mixing homogenized the water column to 40 m depth almost every night, the combination of diurnal warming on clear days and rainfall on cloudy days routinely produced strong stratification in the upper 10 m. Whether due to thermal or freshwater effects, the initial strong stratification was mixed downward and incorporated in the bulk of the mixed layer within a few hours. Stratification cycling was associated with pronounced variability of ocean surface boundary layer turbulence and vertical shear of wind-driven (Ekman) currents. Decoupled from the bulk of the mixed layer by strong stratification, warm and fresh near-surface waters were rapidly accelerated by wind, producing the well-known "slippery layer" effect, and leading to a strong downwind near-surface distortion of the Ekman profile. A case study illustrates the ability of the new generation of Lagrangian floats to measure rapidly evolving temperature, salinity, and velocity, including turbulent and internal wave components. Quantitative interpretation of the results remains a challenge, which can be addressed with high-resolution numerical modeling, given sufficiently accurate air-sea fluxes.

3.
Proc Natl Acad Sci U S A ; 115(6): 1162-1167, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29339497

RESUMEN

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

4.
J Atmos Ocean Technol ; 35(2): 411-427, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32704201

RESUMEN

This paper describes the instrumentation and techniques for long-term targeted observation of the centimeter-scale velocity structure within the oceanic surface boundary layer, made possible by the recent developments in capabilities of autonomous platforms and self-contained pulse-coherent acoustic Doppler current profilers (ADCPs). Particular attention is paid to the algorithms of ambiguity resolution ("unwrapping") of pulse-coherent Doppler velocity measurements. The techniques are demonstrated using the new Nortek Signature1000 ADCP mounted on a Lagrangian float, a combination shown to be capable of observing ocean turbulence in a number of recent studies. Statistical uncertainty of the measured velocities in relation to the ADCP setup is also evaluated. Described techniques and analyses should be broadly applicable to other autonomous and towed applications of pulse-coherent ADCPs.

5.
Oceanography (Wash D C) ; 30(2): 38-48, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35095239

RESUMEN

The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.

6.
Science ; 302(5652): 1952-5, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14671300

RESUMEN

Brine rejection that accompanies ice formation in coastal polynyas is responsible for ventilating several globally important water masses in the Arctic and Antarctic. However, most previous studies of this process have been indirect, based on heat budget analyses or on warm-season water column inventories. Here, we present direct measurements of brine rejection and formation of North Pacific Intermediate Water in the Okhotsk Sea from moored winter observations. A steady, nearly linear salinity increase unambiguously caused by local ice formation was observed for more than a month.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...