Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616398

RESUMEN

Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils. In the produced materials, MQ particles play a role of the molecular entanglements, so rubber molecular weight and MQ filler concentration are the parameters determining the structure and properties of such composites. Moreover, a need for a saturation of the reactive groups and minimization of the surface energy of MQ particles also determine the size and distribution of the filler at different filler rates. An unusual correlation of the concentration of MQ component and the interparticle spacing was revealed. Based on the extraordinary mechanical properties and structure features, a model of the structure poly(dimethyl siloxane)-rubber molecular composites and of its evolution in the process of stretching, was proposed.

2.
Soft Matter ; 16(43): 9857-9863, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33048105

RESUMEN

Designing sensors for toxic compounds such as mercury salts in aqueous solutions still remains one of the most pressing tasks of modern chemical research, since many existing systems do not show enough sensitivity and/or response. In this regard, the opportunities offered by supramolecular approaches can be used to improve both these characteristics by creating a new self-organized smart system. Herein, we show that barium cations, that according to the data of X-ray standing waves do not bind directly to the ionophore molecules in the monolayers at the air/water interface, could be used to efficiently preorganize such molecules to achieve supramolecular architecture. We demonstrate that such preorganization ensures both low analyte detection threshold and high fluorescent response. We reveal the interrelation of the monolayer structure and receptor characteristics of a sensory system and show that such cation-induced preorganization in Langmuir monolayers of a hemicyanine dithia-aza-crown-substituted chromoionophore inhibits the formation of non-fluorescent aggregates with low receptor function, and allows the quantitative detection of mercury cations using a ratiometric fluorometric approach.

3.
Langmuir ; 36(6): 1423-1429, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-31986882

RESUMEN

Redox isomerism, that is, the change of a metal cation valence state in organic complexes, can find promising applications in multistable molecular switches for various molecular electronic devices. However, despite a large number of studies devoted to such processes in organic complexes of multivalent lanthanides, redox-isomeric transformations were never observed for europium. In the present work, we demonstrate the unique case of redox isomerization of Eu(III)/Eu(II) complexes on the example of Eu double-decker octa-n-butoxyphthalocyaninate (Eu[(BuO)8Pc]2) under ambient conditions (air and room temperature). It is shown that assumption of the face-on orientation on the aqueous subphase surface, in which two of each phthalocyanine decks in Eu[(BuO)8Pc]2 are located in different media (air and water), leads to the intramolecular electron transfer that results in the formation of a divalent Eu(II) cation in the complex. Lateral compression of the thus-formed monolayer results in the reorientation of bisphthalocyaninate to the edge-on state, in which the ligands can be considered identical, and occurrence of the reverse redox-isomeric transformation into the complex with a trivalent Eu cation. Both redox-isomeric states were directly observed by X-ray absorption near-edge structure spectroscopy in ultrathin films formed under different conditions.

4.
Nanoscale ; 11(10): 4463-4470, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30801586

RESUMEN

Several generations of carbosilane dendrimers with quaterthiophene end groups were studied by X-ray scattering in small and wide angles, differential scanning calorimetry, polarizing optical and atomic force microscopy and molecular modelling. It was established that the semiconducting properties of such materials are determined by the formation of smectic structures in which aliphatic regions, possessing a low degree of the ordering, alternate with highly ordered herring-bone type crystallites formed by aromatic fragments. The presence of long aliphatic spacers in the dendrimers' structure allows easy formation of such crystallites. Such dendrimers assume flattened conformations, as a smectic mesophase is thermodynamically preferable in a wide temperature range. Only in the dendrimers of the fifth generation, as the density of periphery regions increases substantially, π-π stacking of oligothiophene groups is not enough to hold together, and the molecules take on a spherical shape. As a result, extended conducting conjugated regions do not form, and dendrimers of high generations possess comparatively low semiconducting properties. From the technological point of view, quaterthiophene based carbosilane dendrimers are able to form highly uniform functional films. However, the use of lower generation dendrimers is much more preferable, as additional synthetic steps for the production of higher generation compounds do not lead to the improvement of functional properties.

5.
ACS Appl Mater Interfaces ; 11(6): 6315-6324, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30663300

RESUMEN

High structural quality of crystalline organic semiconductors is the basis of their superior electrical performance. Recent progress in quasi two-dimensional (2D) organic semiconductor films challenges bulk single crystals because both demonstrate competing charge-carrier mobilities. As the thinnest molecular semiconductors, monolayers offer numerous advantages such as unmatched flexibility and light transparency as well  they are an excellent platform for sensing. Oligothiophene-based materials are among the most promising ones for light-emitting applications because of the combination of efficient luminescence and decent charge-carrier mobility. Here, we demonstrate single-crystal monolayers of unprecedented structural order grown from four alkyl-substituted thiophene and thiophene-phenylene oligomers. The monolayer crystals with lateral dimensions up to 3 mm were grown from the solution on substrates with various surface energies and roughness by drop or spin-casting with subsequent slow solvent evaporation. Our data indicate that 2D crystallization resulting in single-crystal monolayers occurs at the receding gas-solution-substrate contact line. The structural properties of the monolayers were studied by grazing-incidence X-ray diffraction/reflectivity, atomic force and differential interference contrast microscopies, and imaging spectroscopic ellipsometry. These highly ordered monolayers demonstrated an excellent performance in organic field-effect transistors approaching the best values reported for the thiophene or thiophene-phenylene oligomers. Our findings pave the way for efficient monolayer organic electronics highlighting the high potential of simple solution-processing techniques for the growth of large-size single-crystal monolayers with excellent structural order and electrical performance competing against bulk single crystals.

6.
Soft Matter ; 14(48): 9755-9759, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30484468

RESUMEN

Variation of generation number strongly affects the type of ordering found for polybutylcarbosilane dendrimers: G5 dendrimers are liquid-like, G6 are cubic liquid crystals and G7/G8 are disordered close-packed. It was revealed that G6 dendrimers are highly likely to form Im3[combining macron]m lattice structures with the parameter a = 5.15 nm, and a domain size that exceeds 100 nm.

7.
ACS Appl Mater Interfaces ; 9(21): 18078-18086, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28488872

RESUMEN

In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

8.
Langmuir ; 30(50): 15327-34, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25422126

RESUMEN

Self-assembly of highly soluble water-stable tetramethyldisiloxane-based dimer of α,α'-dialkylquaterthiophene on the water-air interface was investigated by Langmuir, grazing incidence X-ray diffraction, and X-ray reflectivity techniques. The conditions for formation of very homogeneous crystalline monolayer Langmuir-Blodgett (LB) films of the oligomer were found. Monolayer organic field-effect transistors (OFETs) based on these LB films as a semiconducting layer showed hole mobilities up to 3 × 10(-3) cm(2)/(V s), on-off ratio of 10(5), small hysteresis, and high long-term stability. The electrical performance of the LB films studied is close to that for the same material in the bulk or in the monolayer OFETs prepared from water vapor sensitive chlorosilyl derivatives of quaterthiophene by self-assembling from solution. These findings show high potential of disiloxane-based LB films in monolayer OFETs for large-area organic electronics.

9.
Soft Matter ; 10(11): 1746-57, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24651760

RESUMEN

Synthesis and mesophase structure characterisation are reported for a group of alkali salts of 2,3,4-tris(dodecyloxy)benzenesulfonic acid. As revealed by a combination of polarizing optical microscopy, differential scanning calorimetry and X-ray scattering, variation of the effective mesogen shape due to changes of the cation size leads to systematic transformation of the materials' phase behaviour. Thermotropic mesophases of different types and dimensionalities were observed: 1D (smectic bilayers), 2D (ordered and disordered columnar phases), and 3D (high-temperature micellar mesomorphic phase, low-temperature crystalline one). Cubic packing prevails when the cation size is small and, thus, the effective mesogen shape is close to the conic one. With increasing ion size, the mesogen shape becomes more tapered, and columnar mesophases appear to be more stable.

10.
Langmuir ; 28(46): 16186-95, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23036156

RESUMEN

Different techniques for a relatively fast self-assembled monolayer film formation such as Langmuir-Blodgett (LB), spin-coating, and dip-coating methods have been compared using chloro[11-(5''''-ethyl-2,2':5',2″:5''',2''':5''',2''''-quinquethiophene-5-yl)undecyl]dimethylsilane as a reactive precursor. It was shown that both spin-coating and LB techniques are very promising methods for preparation of highly ordered monolayer films of organosilicon-functionalized quinquethiophene with vertical orientation of oligothiophene fragments, while dip-coating gives only partial coverage. Optimal conditions for complete filling out the substrate surface by the quinquethiophene-containing monolayer by spin-coating and LB methods have been found. Grazing incidence X-ray diffraction measurements confirmed formation of in-plane crystalline order within the monolayer film. Changes in the layer structure were established by X-ray reflectivity and grazing incidence X-ray diffraction methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...