Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391995

RESUMEN

This present work is aimed at conducting fundamental and exploratory studies of the mechanisms of electrical impedance signal formation. This paper also considers morphofunctional changes in forearm tissues during the performance of basic hand actions. For this purpose, the existing research benches were modernized to conduct experiments of mapping forearm muscle activity by electrode systems on the basis of complexing the electrical impedance signals and electromyography signals and recording electrode systems' pressing force using force transducers. Studies were carried out with the involvement of healthy volunteers in the implementation of vertical movement of the electrode system and ultrasound transducer when the subject's upper limb was positioned in the bed of the stand while performing basic hand actions in order to identify the relationship between the morphofunctional activity of the upper limb muscles and the recorded parameters of the electro-impedance myography signal. On the basis of the results of the studies, including complex measurements of neuromuscular activity on healthy volunteers such as the signals of electro-impedance myography and pressing force, analyses of the morphofunctional changes in tissues during action performance on the basis of ultrasound and MRI studies and the factors influencing the recorded signals of electro-impedance myography are described. The results are of fundamental importance and will enable reproducible electro-impedance myography signals, which, in turn, allow improved anthropomorphic control.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Impedancia Eléctrica , Electromiografía , Contracción Muscular/fisiología , Miografía/métodos
2.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671931

RESUMEN

The incidence of cardiovascular diseases is continuously increasing around the world. Therefore, the study of new methods for diagnosing cardiovascular diseases is very important. Early diagnosis and evaluation of the effectiveness of treatments are among the most important tasks. In this work, we study changes in vascular compliance and vascular tone of the lower extremities in a patient diagnosed with an early stage of varicose veins. The study is based on recording the bioimpedance signals of the lower extremities and their parts using the Rheo-32 multichannel device. Registration in the monitoring system takes place in two stages: the first in a state of relaxation, and the second after applying a local massage on one of the legs for five minutes. The results indicate a change in the type of vascular tone of the lower extremities after the massage, while the type of vascular tone changes and shifts on average towards the normotonic type. The method proposed in this study makes it possible to quantitatively and qualitatively assess changes in the tone of the vessels of the extremities.


Asunto(s)
Enfermedades Cardiovasculares , Várices , Humanos , Várices/diagnóstico , Várices/etiología , Várices/terapia , Extremidad Inferior/irrigación sanguínea , Pierna/irrigación sanguínea , Venas
3.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271088

RESUMEN

The detection of muscle contraction and the estimation of muscle force are essential tasks in robot-assisted rehabilitation systems. The most commonly used method to investigate muscle contraction is surface electromyography (EMG), which, however, shows considerable disadvantages in predicting the muscle force, since unpredictable factors may influence the detected force but not necessarily the EMG data. Electrical impedance myography (EIM) investigates the change in electrical impedance during muscle activities and is another promising technique to investigate muscle functions. This paper introduces the design, development, and evaluation of a device that performs EMG and EIM simultaneously for more robust measurement of muscle conditions subject to artifacts. The device is light, wearable, and wireless and has a modular design, in which the EMG, EIM, micro-controller, and communication modules are stacked and interconnected through connectors. As a result, the EIM module measures the bioimpedance between 20 and 200 Ω with an error of less than 5% at 140 SPS. The settling time during the calibration phase of this module is less than 1000 ms. The EMG module captures the spectrum of the EMG signal between 20-150 Hz at 1 kSPS with an SNR of 67 dB. The micro-controller and communication module builds an ARM-Cortex M3 micro-controller which reads and transfers the captured data every 1 ms over RF (868 Mhz) with a baud rate of 500 kbps to a receptor connected to a PC. Preliminary measurements on a volunteer during leg extension, walking, and sit-to-stand showed the potential of the system to investigate muscle function by combining simultaneous EMG and EIM.


Asunto(s)
Contracción Muscular , Dispositivos Electrónicos Vestibles , Impedancia Eléctrica , Electromiografía/métodos , Humanos , Músculos
4.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35062564

RESUMEN

Knowledge of renal blood circulation is considered as an important physiological value, particularly for fast detection of acute allograft rejection as well as the management of critically ill patients with acute renal failure. The electrical impedance signal obtained from kidney with an appropriate electrode system and optimal electrode system position regarding to the kidney projection on skin surface reflects the nature of renal blood circulation and tone of renal blood vessels. This paper proposes a specific numerical modelling based on prior information from MRI-data. The numerical modelling was conducted for electrical impedance change estimation due to renal blood distribution. The proposed model takes into the account the geometrical and electrophysiological parameters of tissues around the kidney as well as the actual blood distribution within the kidney. The numerical modelling had shown that it is possible to register the electrical impedance signal caused by renal blood circulation with an electrode system commensurate with the size of kidney, which makes it possible to reduce the influence of surrounding tissues and organs. Experimental studies were obtained to prove the numerical modelling and the effectiveness of developed electrode systems based on the obtained simulation results. The obtained electrical impedance signal with the appropriate electrode system shows very good agreement with the renal blood change estimated using Doppler ultrasound. For the measured electrical impedance signal, it is possible to obtain the amplitude-time parameters, which reflect the hemodynamic characteristics of the kidneys and used in diagnostics, which is the subject of further research.


Asunto(s)
Riñón , Simulación por Computador , Impedancia Eléctrica , Electrodos , Humanos , Riñón/diagnóstico por imagen
5.
Sensors (Basel) ; 22(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35062626

RESUMEN

A venipuncture is the most common non-invasive medical procedure, and is frequently used with patients; however, a high probability of post-injection complications accompanies intravenous injection. The most common complication is a hematoma, which is associated with puncture of the uppermost and lowermost walls. To simplify and reduce complications of the venipuncture procedure, and as well as automation of this process, a device that can provide information of the needle tip position into patient's tissues needs to be developed. This paper presents a peripheral vascular puncture control system based on electrical impedance measurements. A special electrode system was designed to achieve the maximum sensitivity for puncture identification using a traditional needle, which is usually used in clinical practice. An experimental study on subjects showed that the electrical impedance signal changed significantly once the standard needle entered the blood vessel. On basis of theoretical and experimental studies, a decision rule of puncture identification based on the analysis of amplitude-time parameters of experimental signals was proposed. The proposed method was tested on 15 test and 9 control samples, with the results showing that 97% accuracy was obtained.


Asunto(s)
Agujas , Punciones , Impedancia Eléctrica , Electrodos , Humanos
6.
Sensors (Basel) ; 21(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960542

RESUMEN

The real-time artery diameter waveform assessment during cardio cycle can allow the measurement of beat-to-beat pressure change and the long-term blood pressure monitoring. The aim of this study is to develop a self-calibrated bio-impedance-based sensor, which can provide regular measurement of the blood-pressure-dependence time variable parameters such as the artery diameter waveform and the elasticity. This paper proposes an algorithm based on analytical models which need prior geometrical and physiological patient parameters for more appropriate electrode system selection and hence location to provide accurate blood pressure measurement. As a result of this study, the red cell orientation effect contribution was estimated and removed from the bio-impedance signal obtained from the artery to keep monitoring the diameter waveform correspondence to the change of blood pressure.


Asunto(s)
Arterias , Determinación de la Presión Sanguínea , Arterias/diagnóstico por imagen , Presión Sanguínea , Impedancia Eléctrica , Humanos , Presión
7.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35009640

RESUMEN

The electrical impedance myography method is widely used in solving bionic control problems and consists of assessing the change in the electrical impedance magnitude during muscle contraction in real time. However, the choice of electrode systems sizes is not always properly considered when using the electrical impedance myography method in the existing approaches, which is important in terms of electrical impedance signal expressiveness and reproducibility. The article is devoted to the determination of acceptable sizes for the electrode systems for electrical impedance myography using the Pareto optimality assessment method and the electrical impedance signals formation model of the forearm area, taking into account the change in the electrophysical and geometric parameters of the skin and fat layer and muscle groups when performing actions with a hand. Numerical finite element simulation using anthropometric models of the forearm obtained by volunteers' MRI 3D reconstructions was performed to determine a sufficient degree of the forearm anatomical features detailing in terms of the measured electrical impedance. For the mathematical description of electrical impedance relationships, a forearm two-layer model, represented by the skin-fat layer and muscles, was reasonably chosen, which adequately describes the change in electrical impedance when performing hand actions. Using this model, for the first time, an approach that can be used to determine the acceptable sizes of electrode systems for different parts of the body individually was proposed.


Asunto(s)
Músculo Esquelético , Miografía , Impedancia Eléctrica , Electrodos , Humanos , Reproducibilidad de los Resultados
8.
Sensors (Basel) ; 22(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35009681

RESUMEN

Vascular tone plays a vital role in regulating blood pressure and coronary circulation, and it determines the peripheral vascular resistance. Vascular tone is dually regulated by the perivascular nerves and the cells in the inside lining of blood vessels (endothelial cells). Only a few methods for measuring vascular tone are available. Because of this, determining vascular tone in different arteries of the human body and monitoring tone changes is a vital challenge. This work presents an approach for determining vascular tone in human extremities based on multi-channel bioimpedance measurements. Detailed steps for processing the bioimpedance signals and extracting the main parameters from them have been presented. A graphical interface has been designed and implemented to display the vascular tone type in all channels with the phase of breathing during each cardiac cycle. This study is a key step towards understanding the way vascular tone changes in the extremities and how the nervous system regulates these changes. Future studies based on records of healthy and diseased people will contribute to increasing the possibility of early diagnosis of cardiovascular diseases.


Asunto(s)
Arterias , Células Endoteliales , Presión Sanguínea , Extremidades , Humanos
9.
Sensors (Basel) ; 22(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009694

RESUMEN

Creating highly functional prosthetic, orthotic, and rehabilitation devices is a socially relevant scientific and engineering task. Currently, certain constraints hamper the development of such devices. The primary constraint is the lack of an intuitive and reliable control interface working between the organism and the actuator. The critical point in developing these devices and systems is determining the type and parameters of movements based on control signals recorded on an extremity. In the study, we investigate the simultaneous acquisition of electric impedance (EI), electromyography (EMG), and force myography (FMG) signals during basic wrist movements: grasping, flexion/extension, and rotation. For investigation, a laboratory instrumentation and software test setup were made for registering signals and collecting data. The analysis of the acquired signals revealed that the EI signals in conjunction with the analysis of EMG and FMG signals could potentially be highly informative in anthropomorphic control systems. The study results confirm that the comprehensive real-time analysis of EI, EMG, and FMG signals potentially allows implementing the method of anthropomorphic and proportional control with an acceptable delay.


Asunto(s)
Biónica , Miografía , Impedancia Eléctrica , Electromiografía , Movimiento , Muñeca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...