Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 52(3): 537-548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35182392

RESUMEN

Watershed-scale hydrologic models are commonly used to assess the water quality effects of agricultural conservation practices that improve soil health (e.g., cover crops and no-till). However, models rarely account for how these practices (i.e., soil health practices) affect soil physical and functional properties such as water holding capacity and soil aggregate stability, which may, in turn, affect water quality. We introduce a method to represent changes in soil physical and functional properties caused by soil health practices in the Soil and Water Assessment Tool (SWAT) model. We used the SWAT model's default representation of winter cover crops and no-till and modified soil descriptive parameters to depict soil health practice effects on soil properties. We assumed that the soil health practices would increase soil organic carbon (SOC), a principal indicator of soil health, by 0.01 g C g-1 of soil and then estimated changes in other soil properties (e.g., water holding capacity) using SOC-based predictive equations and preceding literature. Results indicated that our soil property modifications had statistically significant effects on simulated hydrology and nutrient loss, though outputs were more substantially affected by the model's default representation of cover crops and no-till. Results also indicated that soil health practices can reduce nitrogen and total phosphorus loss but may increase dissolved reactive phosphorus loss. Our representation of soil health practices provides a more complete estimate of practice efficacy but underscores a need for additional observational data to verify results and guide further model improvements.


Asunto(s)
Hidrología , Suelo , Carbono , Agricultura/métodos , Nutrientes , Fósforo/análisis
2.
J Environ Manage ; 293: 112910, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34098350

RESUMEN

Nitrogen (N) and phosphorus (P) loss from crop production agriculture is transported to adjacent and downstream water bodies, resulting in negative environmental impacts including harmful and nuisance algal blooms. Cover crops are a conservation management practice that replaces bare soil with vegetation outside of the cash crop growing season, purportedly reducing N and P loss by increasing water and nutrient demand in agroecosystems. In this study, we compared nitrate (NO3--N), total N (TN), dissolved reactive P (DRP), and total P (TP) loads in subsurface (tile) drainage and surface runoff from fields with cover crop management (CC) and fields without cover crop management (NoCC) using continuous monitoring data from 40 agricultural fields located throughout northcentral Ohio, United States (US). We found that average monthly tile NO3--N and TN loads from CC fields were ~50% less than NoCC fields, while average monthly tile discharge, DRP, and TP loads did not differ between CC and NoCC fields. Cover crops also did not significantly influence average monthly surface metrics. Cover crops reduced monthly totals of tile NO3--N and TN loads by ~1.0-2.6 kg N ha-1 from January to June (winter and spring), coinciding with critical periods of nutrient loss from agroecosystems in the midwestern US, but increased monthly totals of tile DRP (by 0.4-12.1 g DRP ha-1) and TP (by 1.2-31.6 g TP ha-1) loads during some months. We found similar patterns at the annual time scale whereby CC fields had lesser cumulative annual totals of tile NO3--N and TN but greater cumulative annual totals of tile DRP and TP. These results show that the influence of cover crops on N loads, but not P, were consistent across temporal scales of examination, demonstrating that cover crops effectively increased N demand and mitigated N losses from agricultural fields. The variable influence of cover crops on P loads underscores the need for greater understanding of the factors and mechanisms that control P loss in systems that include cover crop management. Furthermore, these findings stress the importance of identifying and selecting conservation management practices tailored to the natural resource concern.


Asunto(s)
Nitrógeno , Fósforo , Agricultura , Productos Agrícolas , Medio Oeste de Estados Unidos , Ohio , Fósforo/análisis , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA