Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38076843

RESUMEN

Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized 2-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, likely contributing to differential modulation of hippocampal activity during behavior and learning.

2.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973379

RESUMEN

Spatial memories are represented by hippocampal place cells during navigation. This spatial code is dynamic, undergoing changes across time, known as representational drift, and across changes in internal state, even while navigating the same spatial environment with consistent behavior. A dynamic code may provide the hippocampus a means to track distinct epochs of experience that occur at different times or during different internal states and update spatial memories. Changes to the spatial code include place fields (PFs) that remap to new locations and place fields that vanish, while others are stable. However, what determines place field fate across epochs remains unclear. We measured the lap-by-lap properties of place cells in mice during navigation for a block of trials in a rewarded virtual environment. We then determined the position of the place fields in another block of trials in the same spatial environment either separated by a day (a distinct temporal epoch) or during the same session but with reward removed to change reward expectation (a distinct internal state epoch). We found that place cells with remapped place fields across epochs tended to have lower spatial precision during navigation in the initial epoch. Place cells with stable or vanished place fields tended to have higher spatial precision. We conclude that place cells with less precise place fields have greater spatial flexibility, allowing them to respond to, and track, distinct epochs of experience in the same spatial environment, while place cells with precise place fields generally preserve spatial information when their fields reappear.


Asunto(s)
Hipocampo , Células de Lugar , Ratones , Animales , Memoria Espacial , Recompensa
3.
Nat Commun ; 14(1): 6758, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875465

RESUMEN

The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases  fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.


Asunto(s)
Extinción Psicológica , Miedo , Ratones , Animales , Miedo/fisiología , Extinción Psicológica/fisiología , Condicionamiento Clásico/fisiología , Hipocampo/fisiología , Memoria/fisiología
4.
Res Sq ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034716

RESUMEN

Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.

5.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034812

RESUMEN

Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.

6.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187677

RESUMEN

Spatial memory in the hippocampus involves dynamic neural patterns that change over days, termed representational drift. While drift may aid memory updating, excessive drift could impede retrieval. Memory retrieval is influenced by reward expectation during encoding, so we hypothesized that diminished reward expectation would exacerbate representational drift. We found that high reward expectation limited drift, with CA1 representations on one day gradually re-emerging over successive trials the following day. Conversely, the absence of reward expectation resulted in increased drift, as the gradual re-emergence of the previous day's representation did not occur. At the single cell level, lowering reward expectation caused an immediate increase in the proportion of place-fields with low trial-to-trial reliability. These place fields were less likely to be reinstated the following day, underlying increased drift in this condition. In conclusion, heightened reward expectation improves memory encoding and retrieval by maintaining reliable place fields that are gradually reinstated across days, thereby minimizing representational drift.

7.
Nat Commun ; 13(1): 6662, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333323

RESUMEN

Hippocampal place cells support reward-related spatial memories by forming a cognitive map that over-represents reward locations. The strength of these memories is modulated by the extent of reward expectation during encoding. However, the circuit mechanisms underlying this modulation are unclear. Here we find that when reward expectation is extinguished in mice, they remain engaged with their environment, yet place cell over-representation of rewards vanishes, place field remapping throughout the environment increases, and place field trial-to-trial reliability decreases. Interestingly, Ventral Tegmental Area (VTA) dopaminergic axons in CA1 exhibit a ramping reward-proximity signal that depends on reward expectation and inhibiting VTA dopaminergic neurons largely replicates the effects of extinguishing reward expectation. We conclude that changing reward expectation restructures CA1 cognitive maps and determines map reliability by modulating the dopaminergic VTA-CA1 reward-proximity signal. Thus, internal states of high reward expectation enhance encoding of spatial memories by reinforcing hippocampal cognitive maps associated with reward.


Asunto(s)
Motivación , Recompensa , Ratones , Animales , Reproducibilidad de los Resultados , Área Tegmental Ventral/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo
8.
Nat Commun ; 12(1): 2977, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016996

RESUMEN

When exploring new environments animals form spatial memories that are updated with experience and retrieved upon re-exposure to the same environment. The hippocampus is thought to support these memory processes, but how this is achieved by different subnetworks such as CA1 and CA3 remains unclear. To understand how hippocampal spatial representations emerge and evolve during familiarization, we performed 2-photon calcium imaging in mice running in new virtual environments and compared the trial-to-trial dynamics of place cells in CA1 and CA3 over days. We find that place fields in CA1 emerge rapidly but tend to shift backwards from trial-to-trial and remap upon re-exposure to the environment a day later. In contrast, place fields in CA3 emerge gradually but show more stable trial-to-trial and day-to-day dynamics. These results reflect different roles in CA1 and CA3 in spatial memory processing during familiarization to new environments and constrain the potential mechanisms that support them.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Células de Lugar/fisiología , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Animales , Técnicas de Observación Conductual , Conducta Animal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/diagnóstico por imagen , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/diagnóstico por imagen , Craneotomía , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Masculino , Ratones , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Modelos Animales , Imagen Óptica/instrumentación , Imagen Óptica/métodos
9.
Neuron ; 96(2): 490-504.e5, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024668

RESUMEN

Hippocampal place cell ensembles form a cognitive map of space during exposure to novel environments. However, surprisingly little evidence exists to support the idea that synaptic plasticity in place cells is involved in forming new place fields. Here we used high-resolution functional imaging to determine the signaling patterns in CA1 soma, dendrites, and axons associated with place field formation when mice are exposed to novel virtual environments. We found that putative local dendritic spikes often occur prior to somatic place field firing. Subsequently, the first occurrence of somatic place field firing was associated with widespread regenerative dendritic events, which decreased in prevalence with increased novel environment experience. This transient increase in regenerative events was likely facilitated by a reduction in dendritic inhibition. Since regenerative dendritic events can provide the depolarization necessary for Hebbian potentiation, these results suggest that activity-dependent synaptic plasticity underlies the formation of many CA1 place fields.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/metabolismo , Calcio/metabolismo , Dendritas/metabolismo , Locomoción/fisiología , Plasticidad Neuronal/fisiología , Animales , Región CA1 Hipocampal/química , Región CA1 Hipocampal/citología , Dendritas/química , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Prevalencia
11.
Nature ; 517(7533): 200-4, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25363782

RESUMEN

Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Dendritas/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Percepción Espacial/fisiología , Potenciales de Acción , Animales , Axones/metabolismo , Masculino , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Factores de Tiempo
12.
J Physiol ; 591(19): 4793-805, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23878372

RESUMEN

We recently described a new form of neural integration and firing in a subset of interneurons, in which evoking hundreds of action potentials over tens of seconds to minutes produces a sudden barrage of action potentials lasting about a minute beyond the inciting stimulation. During this persistent firing, action potentials are generated in the distal axon and propagate retrogradely to the soma. To distinguish this from other forms of persistent firing, we refer to it here as 'retroaxonal barrage firing', or 'barrage firing' for short. Its induction is blocked by chemical inhibitors of gap junctions and curiously, stimulation of one interneuron in some cases triggers barrage firing in a nearby, unstimulated interneuron. Beyond these clues, the mechanisms of barrage firing are unknown. Here we report new results related to these mechanisms. Induction of barrage firing was blocked by lowering extracellular calcium, as long as normal action potential threshold was maintained, and it was inhibited by blocking L-type voltage-gated calcium channels. Despite its calcium dependence, barrage firing was not prevented by inhibiting chemical synaptic transmission. Furthermore, loading the stimulated/recorded interneuron with BAPTA did not block barrage firing, suggesting that the required calcium entry occurs in other cells. Finally, barrage firing was normal in mice with deletion of the primary gene for neuronal gap junctions (connexin36), suggesting that non-neuronal gap junctions may be involved. Together, these findings suggest that barrage firing is probably triggered by a multicellular mechanism involving calcium signalling and gap junctions, but operating independently of chemical synaptic transmission.


Asunto(s)
Potenciales de Acción , Axones/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Animales , Axones/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Conexinas/genética , Conexinas/metabolismo , Eliminación de Gen , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/metabolismo , Ratones , Transmisión Sináptica , Proteína delta-6 de Union Comunicante
13.
Nat Neurosci ; 14(2): 200-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21150916

RESUMEN

The conventional view of neurons is that synaptic inputs are integrated on a timescale of milliseconds to seconds in the dendrites, with action potential initiation occurring in the axon initial segment. We found a much slower form of integration that leads to action potential initiation in the distal axon, well beyond the initial segment. In a subset of rodent hippocampal and neocortical interneurons, hundreds of spikes, evoked over minutes, resulted in persistent firing that lasted for a similar duration. Although axonal action potential firing was required to trigger persistent firing, somatic depolarization was not. In paired recordings, persistent firing was not restricted to the stimulated neuron; it could also be produced in the unstimulated cell. Thus, these interneurons can slowly integrate spiking, share the output across a coupled network of axons and respond with persistent firing even in the absence of input to the soma or dendrites.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Animales , Corteza Cerebral/fisiología , Dendritas/fisiología , Ratones , Ratones Transgénicos , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...