Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35975704

RESUMEN

The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Asunto(s)
Nanopartículas , Humanos , Metástasis Linfática , Nanopartículas/química , Ganglios Linfáticos/patología , Colorantes , Carbono
2.
Nanoscale ; 14(13): 5112-5120, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35297914

RESUMEN

The early stages of the COVID-19 pandemic punctuated the need for rapid, mass testing for early detection of viral infection. Carbon dots are easily synthesized, cost-effective fluorescent nanoparticles whose surface functionalities enable facile conjugation with biorecognition elements suitable for  molecular detection of viral RNA. Herein, we report that a pair of complementary antisense oligonucleotide (ASO) sequences can lead to a highly specific molecular aggregation of dual colour carbon dots (CDs) in the presence of SARS-CoV-2 RNA. The nanoprobes used ASOs highly specific to the N-gene of SARS-COV-2. When the ASOs are conjugated to blue and yellow citric acid-derived CDs, the combination of the ASO-CD pairs facilitates aggregation-induced emission enhancement (AIEE) of the measured fluorescence after hybridization with SARS-CoV-2 RNA. We found the sensor capable of differentiating between MERS-CoV and SARS-CoV-2 samples and was found to have a limit of detection of 81 copies per µL. Additionally, we used dialysis to demonstrate that the change in emission upon aggregation is dependent on the compositional heterogeneity of the conjugated-carbon dot mixture.


Asunto(s)
COVID-19 , ARN Viral , COVID-19/diagnóstico , Carbono , Color , Humanos , Oligonucleótidos , Oligonucleótidos Antisentido , Pandemias , ARN Viral/genética , SARS-CoV-2/genética
3.
Chem Commun (Camb) ; 57(51): 6229-6232, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048518

RESUMEN

Tracking the viral progression of SARS-CoV-2 in COVID-19 infected body tissues is an emerging need of the current pandemic. Imaging at near infrared second biological window (NIR-II) offers striking benefits over the other technologies to explore deep-tissue information. Here we design, synthesise and characterise a molecular probe that selectively targets the N-gene of SARS-CoV-2. Highly specific antisense oligonucleotides (ASOs) were conjugated to lead sulfide quantum dots using a UV-triggered thiol-ene click chemistry for the recognition of viral RNA. Our ex vivo imaging studies demonstrated that the probe exhibits aggregation induced NIR-II emission only in presence of SARS-CoV-2 RNA which can be attributed to the efficient hybridisation of the ASOs with their target RNA strands.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , Colorantes Fluorescentes/química , Oligonucleótidos Antisentido/química , Puntos Cuánticos/química , SARS-CoV-2/aislamiento & purificación , Espectroscopía Infrarroja Corta/métodos , Animales , COVID-19/diagnóstico por imagen , COVID-19/metabolismo , Química Clic/métodos , Colorantes Fluorescentes/síntesis química , Humanos , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Pulmón/virología , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos BALB C , Modelos Animales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA