Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38393172

RESUMEN

Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.


Asunto(s)
Bacteriocinas , Queso , Lacticaseibacillus paracasei , Lactobacillus , Bacteriocinas/farmacología , Staphylococcus aureus , Microbiología de Alimentos
2.
PLoS One ; 18(12): e0296032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38109310

RESUMEN

Nanotechnology applications have been employed to improve the stability of bioactive components and drug delivery. Natural-based extracts, especially olive leaf extracts, have been associated with the green economy not only as recycled agri-waste but also in the prevention and treatment of various non-communicable diseases (NCDs). The aim of this work was to provide a comparison between the characteristics, biological activity, and gene expression of water extract of olive leaves (OLE), green synthesized OLE silver nanoparticles (OL/Ag-NPs), and OLE whey protein capsules (OL/WPNs) of the two olive varieties, Tofahy and Shemlali. The particles were characterized by dynamic light scattering, scanning electron microscope (SEM), and Fourier transform infrared. The bioactive compounds of the preparations were evaluated for their antioxidant activity and anticancer effect on HCT-116 colorectal cells as well as for their regulatory effects on cytochrome C oxidase (Cox1) and tumor necrosis factor α (TNF-α) genes. (OL/Ag-NPs) were found to be smaller than (OL/WPNs) with sizes of (37.46±1.85 and 44.86±1.62 nm) and (227.20±2.43 and 553.02±3.60 nm) for Tofahy and Shemlali, respectively. SEM showed that Shemlali (OL/Ag-NPs) had the least aggregation due to their highest Ƹ-potential (-31.76 ± 0.87 mV). The preparations were relatively nontoxic to Vero cells (IC50 = 151.94-789.25 µg/mL), while they were cytotoxic to HCT-116 colorectal cells (IC50 = 77.54-320.64 µg/mL). Shemlali and Tofahy OLE and Tofahy OL/Ag-NPs had a higher selectivity index (2.97-7.08 µg/mL) than doxorubicin (2.36 µg/mL), indicating promising anticancer activity. Moreover, Shemlali preparations regulated the expression of Cox1 (up-regulation) and TNF-α (down-regulation) on HCT-116 cells, revealing their efficiency in suppressing the expression of genes that promote cancer cell proliferation. (OL/Ag-NPs) from Tofahy and Shemlali were found to be more stable, effective, and safe than (OL/WPNs). Consequently, OL/Ag-NPs, especially Tofahy, are the best and safest nanoscale particles that can be safely used in food and pharmaceutical applications.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Olea , Animales , Chlorocebus aethiops , Humanos , Plata/farmacología , Suero Lácteo , Proteína de Suero de Leche , Factor de Necrosis Tumoral alfa , Células Vero , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
3.
Environ Sci Pollut Res Int ; 30(59): 123925-123938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995030

RESUMEN

Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.


Asunto(s)
Quitosano , Lactobacillus plantarum , Ratas , Masculino , Animales , Caspasa 3 , Quitosano/farmacología , Ratas Wistar , Leche , Inflamación , Contaminación de Alimentos
4.
BMC Microbiol ; 23(1): 289, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805450

RESUMEN

BACKGROUND: Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS: Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS: The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), ß-Pinene (7.41%), ß-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION: This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.


Asunto(s)
Achillea , Crocus , Achillea/química , Crocus/química , Conservantes de Alimentos , Limoneno/análisis , Flores , Antibacterianos , Extractos Vegetales/farmacología , Extractos Vegetales/química
5.
Foods ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37107461

RESUMEN

Camel milk is known as a source of nutritional and health supplements. It is known to be rich in peptides and functional proteins. One main issue facing it is related to its contamination, mainly with aflatoxins. The present study aimed to evaluate camel milk samples from different regions while trying to reduce its toxicity using safe approaches based on probiotic bacteria. Collected samples of camel milk were sourced from two main regions: the Arabic peninsula and North Africa. Samples were tested for their contents of aflatoxins (B1 and M1) using two techniques to ensure desired contamination levels. Additionally, feed materials used in camel foods were evaluated. Applied techniques were also tested for their validation. The antioxidant activity of camel milk samples was determined through total phenolic content and antioxidant activity assays. Two strains of probiotic bacteria (Lactobacillus acidophilus NRC06 and Lactobacillus plantarum NRC21) were investigated for their activity against toxigenic fungi. The result revealed high contamination of aflatoxin M1 for all samples investigated. Furthermore, cross-contamination with aflatoxin B1 was recorded. Investigated bacteria were recorded according to their significant inhibition zones against fungal growth (11 to 40 mm). The antagonistic impacts were between 40% and 70% against toxigenic fungi. Anti-aflatoxigenic properties of bacterial strains in liquid media were recorded according to mycelia inhibition levels between 41 to 52.83% against Aspergillus parasiticus ITEM11 with an ability to reduce aflatoxin production between 84.39% ± 2.59 and 90.4% ± 1.32 from media. Bacteria removed aflatoxins from the spiked camel milk in cases involving individual toxin contamination.

6.
Molecules ; 27(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566014

RESUMEN

COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of -8.63, -7.85, and -7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of -7.80, -7.80, and -7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with -7.62, -6.81, and -6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski's Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Quinina , ARN Polimerasa Dependiente del ARN , SARS-CoV-2
7.
Animals (Basel) ; 12(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203183

RESUMEN

This study was conducted to evaluate the effects of adding different levels of the combination of fibrolytic enzymes and probiotics (a mixture of bacteria and yeast) on the performance of fattening lambs. Thirty-two male Ossimi lambs (weighing 39 ± 0.24 kg) were divided into four groups randomly (eight animals each). The first group (control ration, G1) was fed on a ration of 60% concentrate feed mixture (CFM), 20% Egyptian clover (EC), and 20% wheat straw (WS). The second (G2), third (G3), and fourth (G4) groups were fed a control ration supplemented with Calfo Care® at concentrations of 0.5, 1, and 2 kg/ton diet of dry matter (DM). Results showed that the G2 and G3 rations significantly (p ≤ 0.05) increased the DM, organic matter, crude protein, crude fiber, and ether extract digestibility compared with the G1 and G4 rations. Moreover, the G2 and G3 rations increased (p ≤ 0.05) the percentages of total digestible nutrients (TDN), starch values (SV), and digestible crude protein (DCP) compared with the G1 and G4 rations. Both the G2 and G3 rations significantly (p ≤ 0.05) increased the TDN, SV, and DCP as kg/day or g/kg w0.75 and kg or g/100 kg body weight compared with the G1 and G4 rations. Conversely, the G1 ration significantly decreased the feed conversion of DM, TDN, SV, and DCP compared with the experimental groups. Furthermore, the G2, G3, and G4 rations significantly (p ≤ 0.05) increased the total weight gain by 25.34%, 52.20%, and 3.79%, respectively, compared with the G1 ration. The G2, G3, and G4 rations also (p ≤ 0.05) increased the concentrations of most hematological parameters, including triiodothyronine, total protein, albumin, and glucose, compared with the G1 ration. Finally, the best net profit was recorded with the G3 ration, followed by the G2, G4, and G1 rations.

8.
Molecules ; 28(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36615421

RESUMEN

Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the fortification of functional fermented dairy products. Their effects on starter cultures and the physicochemical and sensorial quality of products were monitored. A molecular networking analysis identified a total of 46 compounds in the three bee products that could be potential medicines, including flavonoids, fatty acids, and peptides. BB showed the highest protein and sugar contents (22.57 and 26.78 g/100 g), which cover 45.14 and 53.56% of their daily values (DVs), with considerable amounts of the essential amino acids threonine and lysine (59.50 and 42.03%). BP, BB, and RJ can be considered sources of iron, as 100 g can cover 141, 198.5, and 94.94% of DV%, respectively. BP was revealed to have the highest phenolic and flavonoid contents (105.68 and 43.91 µg/g) and showed a synergetic effect when mixed with RJ, resulting in increased antioxidant activity, while BB showed a synergetic effect when mixed with RJ in terms of both antioxidant and proteolytic powers (IC50 7.54, 11.55, 12.15, 12.50, and 12.65 cP compared to the control (10.55 cP)), reflecting their organoleptic properties and highlighting these health-oriented products as promising natural products for human health care.


Asunto(s)
Própolis , Abejas , Animales , Humanos , Própolis/química , Ácidos Grasos/química , Antioxidantes/análisis , Flavonoides/química , Polen/química
9.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883694

RESUMEN

A synbiotic comprising Saccharomyces cerevisiae yeast (SCY) and Moringa oleifera leaf extract (MOLE) has been encapsulated using nanotechnology. This duo is used as a dietary supplement for growing rabbits. Physicochemical analyses, in vitro antimicrobial activity, and gastrointestinal system evaluation were used to evaluate the quality of the nanofabricated synbiotic. The in vivo study was conducted using 40-day-old male growing rabbits (n = 16 rabbits/group) to evaluate the effect of the nanofabricated synbiotic on the health and growth performance of examined rabbits. Rabbits were equally allocated into four groups; (a) NCS, which received a basal diet supplemented with a noncapsulated 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, (b) LCS: those receiving a nanoencapsulated 5.5 × 1012 CFU SCY + 0.075 g MOLE/kg diet, (c) HCS: those receiving an 11 × 1012 CFU SCY + 0.15 g MOLE/kg diet, and (d) CON: those receiving a basal diet without treatment (control). The treatments continued from day 40 to day 89 of age. During the experimental period, growth performance variables, including body weight (BW), feed consumption, BW gain, and feed conversion ratio were recorded weekly. Blood samples were collected on day 40 of age and immediately before the start of the treatments to confirm the homogeneity of rabbits among groups. On day 89 of age, blood samples, intestinal, and cecal samples were individually collected from eight randomly selected rabbits. The size and polydispersity index of the nanofabricated synbiotic were 51.38 nm and 0.177, respectively. Results revealed that the encapsulation process significantly improved yeast survival through the gastrointestinal tract, specifically in stomach acidic conditions, and significantly increased in vitro inhibitory activities against tested pathogens. Furthermore, treatments had no negative effects on hematobiochemical variables but significantly improved levels of blood plasma, total protein, and insulin-like growth factor-l. Compared to the CON, NCS, and LCS treatments, the HCS treatment increased the amount of intestinal and cecal yeast cells (p < 0.05) and Lactobacillus bacteria (p < 0.05) and decreased number of Salmonella (p < 0.05) and Coliform (p = 0.08) bacteria. Likewise, both LCS and HCS significantly improved the small intestine and cecum lengths compared to CON and NCS. The HCS treatment also significantly improved BW gain and feed conversion compared to CON treatment, whereas the NCS and LCS treatments showed intermediate values. Conclusively, the nanoencapsulation process improved the biological efficiency of the innovative synbiotic used in this study. A high dose of encapsulated synbiotic balanced the gut microflora, resulting in the growth of rabbits during the fattening period.

10.
Toxins (Basel) ; 13(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822530

RESUMEN

Toxin-contaminated foods and beverages are a major source of illness, may cause death, and have a significant negative economic impact worldwide. Aflatoxin B1 (AFB1) is a potent toxin that may induce cancer after chronic low-level exposure. This study developed a quantitative recombinant AflR gene antiserum ELISA technique for aflatoxin B1 detection in contaminated food products. Aflatoxin B1 residuals from 36 food samples were analyzed with HPLC and VICAM. DNA was extracted from aflatoxin-contaminated samples and the AflR gene amplified using PCR. PCR products were purified and ligated into the pGEM-T vector. Recombinant plasmids were sequenced and transformed into competent E. coli (BL21). Molecular size and B-cell epitope prediction for the recombinant protein were assessed. The purified protein was used to induce the production of IgG antibodies in rabbits. Serum IgG was purified and labeled with alkaline phosphatase. Finally, indirect-ELISA was used to test the effectiveness of polyclonal antibodies for detection of aflatoxin B1 in food samples.


Asunto(s)
Aflatoxina B1/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Cromatografía Líquida de Alta Presión/métodos
11.
Animals (Basel) ; 11(7)2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203524

RESUMEN

This study aimed to investigate the antioxidant, antimicrobial, and immunomodulatory activities of a Cleome droserifolia (Forssk.) Del. (Cd) shoot methanolic extracts considering the biological activity of its phytogenic compounds. For this purpose, the Cd phenolic compounds were detected, and an in vitro evaluation of the antioxidant and antimicrobial activities of the Cd extract was performed. For a biological evaluation, 30 v-line rabbits were randomly distributed into three groups with treatments including: a basal diet without Cd shoots powder supplement (C group) or supplemented with 1.25- (Cdl group) or 2.5 (Cdh group)-mg Cd/kg dry matter (DM). The Cd extract showed a linear scavenging activity for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), with the maximal activity observed at a concentration of 1 mg/mL. A total of 16 phenolic compounds were identified by reverse-phase high-performance liquid chromatography (RP-HPLC) in the Cd methanolic extract, among which benzoic acid, rutin, ellagic acid, naringenin, and o-coumaric acid were the major compounds. The methanolic extract of Cd showed inhibitory actions against microbial pathogen species. The in vivo study showed that the two concentrations of Cd significantly improved the redox status of the blood plasma and lysozyme activity. Treatment with Cdh significantly decreased the levels of interleukin-ß1 in the blood plasma compared with the control. Moreover, the two concentrations of Cd significantly increased the counts of intestinal and cecal yeast and Lactobacillus species and decreased the Salmonella and Coliform species compared with the control. The aerial parts of the Cd shrub had strong antioxidant, antimicrobial, and immunomodulatory activities, which can improve the overall health status and seem to be related to its impressive range of biologically active phenolic compounds.

12.
Curr Res Food Sci ; 4: 326-335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124691

RESUMEN

With growing consumer awareness, exploitation of renewable resources is cost-effective and environment friendly. This work examines the potential of citrus peels as natural antioxidants and antimicrobials for food preservation. Extraction yield, total soluble phenols and flavonoids of various citrus peels (sweet orange, lemon, tangerine and grapefruit) were optimized by varying the solvent type. While the highest extract yield (~16 â€‹g/100g) was obtained from the sweet orange peels in methanol, extraction with ethanol maximized the concentration of total phenols and flavonoids (~80 â€‹mg catechol equivalents/100 â€‹g dry weight). In addition, sweet orange peel extract showed the highest DPPH, ABTS and hydroxyl radical scavenging values. UPLC-ESI-MS/MS analysis of aqueous and ethanolic extracts of sweet orange peels revealed more than 40 polyphenolic compounds including phenolic acids and flavonoids, some of which have not been previously reported. The predominant polyphenols were narirutin, naringin, hesperetin-7-O-rutinoside naringenin, quinic acid, hesperetin, datiscetin-3-O-rutinoside and sakuranetin. The incorporation of sweet orange peel extract into two vegetable oils enhanced their oxidative stability. In addition, all citrus peel extracts possessed high antimicrobial activity against several food-borne pathogens, and the activity was highest for the sweet orange peel extract. Overall results suggested the great potential of sweet orange peels as natural antioxidant and antimicrobials, which can be efficiently extracted using a simple and low-cost method, for enhancing the storage stability and safety of vegetable oils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...