Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Neurosci ; 52(3): 207-222, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38967732

RESUMEN

We derive a next generation neural mass model of a population of quadratic-integrate-and-fire neurons, with slow adaptation, and conductance-based AMPAR, GABAR and nonlinear NMDAR synapses. We show that the Lorentzian ansatz assumption can be satisfied by introducing a piece-wise polynomial approximation of the nonlinear voltage-dependent magnesium block of NMDAR current. We study the dynamics of the resulting system for two example cases of excitatory cortical neurons and inhibitory striatal neurons. Bifurcation diagrams are presented comparing the different dynamical regimes as compared to the case of linear NMDAR currents, along with sample comparison simulation time series demonstrating different possible oscillatory solutions. The omission of the nonlinearity of NMDAR currents results in a shift in the range (and possible disappearance) of the constant high firing rate regime, along with a modulation in the amplitude and frequency power spectrum of oscillations. Moreover, nonlinear NMDAR action is seen to be state-dependent and can have opposite effects depending on the type of neurons involved and the level of input firing rate received. The presented model can serve as a computationally efficient building block in whole brain network models for investigating the differential modulation of different types of synapses under neuromodulatory influence or receptor specific malfunction.


Asunto(s)
Potenciales de Acción , Magnesio , Modelos Neurológicos , Neuronas , Dinámicas no Lineales , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Magnesio/farmacología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Simulación por Computador , Humanos , Sinapsis/fisiología , Sinapsis/efectos de los fármacos
2.
Neuroimage ; 283: 120403, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865260

RESUMEN

The mechanisms of cognitive decline and its variability during healthy aging are not fully understood, but have been associated with reorganization of white matter tracts and functional brain networks. Here, we built a brain network modeling framework to infer the causal link between structural connectivity and functional architecture and the consequent cognitive decline in aging. By applying in-silico interhemispheric degradation of structural connectivity, we reproduced the process of functional dedifferentiation during aging. Thereby, we found the global modulation of brain dynamics by structural connectivity to increase with age, which was steeper in older adults with poor cognitive performance. We validated our causal hypothesis via a deep-learning Bayesian approach. Our results might be the first mechanistic demonstration of dedifferentiation during aging leading to cognitive decline.


Asunto(s)
Envejecimiento Saludable , Sustancia Blanca , Humanos , Anciano , Teorema de Bayes , Encéfalo , Envejecimiento/psicología , Imagen por Resonancia Magnética
3.
Netw Neurosci ; 4(3): 595-610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885117

RESUMEN

While numerous studies of ephaptic interactions have focused on either axons of peripheral nerves or on cortical structures, no attention has been given to the possibility of ephaptic interactions in white matter tracts. Inspired by the highly organized, tightly packed geometry of axons in fiber pathways, we aim to investigate the potential effects of ephaptic interactions along these structures that are resilient to experimental probing. We use axonal cable theory to derive a minimal model of a sheet of N ephaptically coupled axons. Numerical solutions of the proposed model are explored as ephaptic coupling is varied. We demonstrate that ephaptic interactions can lead to local phase locking between adjacent traveling impulses and that, as coupling is increased, traveling impulses trigger new impulses along adjacent axons, resulting in finite size traveling fronts. For strong enough coupling, impulses propagate laterally and backwards, resulting in complex spatiotemporal patterns. While common large-scale brain network models often model fiber pathways as simple relays of signals between different brain regions, our work calls for a closer reexamination of the validity of such a view. The results suggest that in the presence of significant ephaptic interactions, the brain fiber tracts can act as a dynamic active medium.

4.
Atmos Environ (1994) ; 44(1): 8-14, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20161525

RESUMEN

The lack of scientific evidence on the constituents, properties, and health effects of second-hand waterpipe smoke has fueled controversy over whether public smoking bans should include the waterpipe. The purpose of this study was to investigate and compare emissions of ultrafine particles (UFP, <100 nm), carcinogenic polyaromatic hydrocarbons (PAH), volatile aldehydes, and carbon monoxide (CO) for cigarettes and narghile (shisha, hookah) waterpipes. These smoke constituents are associated with a variety of cancers, and heart and pulmonary diseases, and span the volatility range found in tobacco smoke.Sidestream cigarette and waterpipe smoke was captured and aged in a 1 m(3) Teflon-coated chamber operating at 1.5 air changes per hour (ACH). The chamber was characterized for particle mass and number surface deposition rates. UFP and CO concentrations were measured online using a fast particle spectrometer (TSI 3090 Engine Exhaust Particle Sizer), and an indoor air quality monitor. Particulate PAH and gaseous volatile aldehydes were captured on glass fiber filters and DNPH-coated SPE cartridges, respectively, and analyzed off-line using GC-MS and HPLC-MS. PAH compounds quantified were the 5- and 6-ring compounds of the EPA priority list. Measured aldehydes consisted of formaldehyde, acetaldehyde, acrolein, methacrolein, and propionaldehyde.We found that a single waterpipe use session emits in the sidestream smoke approximately four times the carcinogenic PAH, four times the volatile aldehydes, and 30 times the CO of a single cigarette. Accounting for exhaled mainstream smoke, and given a habitual smoker smoking rate of 2 cigarettes per hour, during a typical one-hour waterpipe use session a waterpipe smoker likely generates ambient carcinogens and toxicants equivalent to 2-10 cigarette smokers, depending on the compound in question. There is therefore good reason to include waterpipe tobacco smoking in public smoking bans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA