Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(29): 31393-31400, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39072095

RESUMEN

A cobalt catalyst supported on an iron oxide core, denoted as γ-Fe2O3@PEG@THMAM-Co, has been prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping, thermogravimetry differential thermogravimetry, vibrating sample magnetometry, and inductively coupled plasma. Polyhydroxy end groups in the shell make the catalyst particles dispersible in water, allowing Hiyama, Suzuki, and C-N cross-coupling reactions of aryl iodides and bromides. The catalyst could be recovered by magnetic decantation and reused for at least five successive runs with a negligent decrease in its activity or changes in its morphology. Water as a solvent without requiring additives, surfactants, or organic co-solvents, as well as an abundant and low-cost cobalt catalyst combined with facile recovery, low leaching, and scalability, provides an environmentally and economically attractive alternative to established palladium-catalyzed C-C and C-N coupling reactions.

2.
Sci Rep ; 12(1): 17986, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289249

RESUMEN

A nanomagnetic hydrophilic heterogeneous copper catalyst, termed γ-Fe2O3@PEG@PAMAM G0-Cu, has been successfully prepared and characterized using FT-IR, XRD, FE-SEM, TEM, EDX, mapping, TGA/DTG, VSM and ICP analyses. The catalyst displayed excellent activity for the palladium-free Sonogashira cross coupling reaction of various aryl iodides and bromides with phenylacetylene derivatives in pure water. The presence of polyethylene glycol coupled with hydrophilic character of the Cu-catalyst adorned on γ-Fe2O3 MNPs provides the ready dispersion of the catalyst particles in water, leading to higher catalytic performance as well as facile catalyst recovery via simple magnetic decantation. The recovered catalyst was reused for at least six successive runs with little reduction in its catalytic activity and any noticeable changes in its structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as the exploitation of abundant and low-cost copper catalyst instead of expensive Pd catalyst along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the Sonogashira coupling reaction.


Asunto(s)
Cobre , Nanopartículas de Magnetita , Cobre/química , Yoduros , Bromuros , Espectroscopía Infrarroja por Transformada de Fourier , Polietilenglicoles , Agua , Solventes
3.
RSC Adv ; 12(15): 8833-8840, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424882

RESUMEN

The recyclable nanomagnetic Pd-complex PAMAM G0-Pd@γ-Fe2O3 is reported for catalytic C-C cross-coupling reactions of challenging substrates. Mainly, a great variety of aryl chlorides can be used as substrates for Suzuki-Miyaura and Mizoroki-Heck reactions under mild reaction conditions (60-90 °C) and low catalyst loading (<1 mol% Pd) in aqueous media. The presence of numerous polar groups in the polymer matrix increases the solubility of the catalyst in water, thus facilitating its operation in aqueous environments. The immobilization of the catalyst on the surface of a magnetic platform allows its effective recovery and reuse without significant loss of catalytic activity for at least six cycles with total leaching of <1% palladium metal, meeting the requirements for acceptable metal residues in the pharmaceutical industry.

4.
RSC Adv ; 11(26): 15989-16003, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481188

RESUMEN

Saponin, as a green and available phytochemical, was immobilized on the surface of magnetite nanoparticles then doped with Cu ions (Fe3O4@Sap/Cu(ii)) and used as an efficient nanocatalyst for the synthesis of quinazoline and acridine derivatives, due to their high application and importance in various fields of science. Different spectroscopic and microscopic techniques were used for the catalyst characterization such as FT-IR, XRD, FE-SEM, EDX, TEM, TGA, VSM, BET, DLS, CV, and XPS analyses. All characterization data were correlated with each other so that the structure of the catalyst was accurately characterized. The reactions were performed in the presence of a low amount of Fe3O4@Sap/Cu(ii) (0.42 mol%) as a green catalyst in water over a short period of time. The results show well the effective role of saponin in solving the problem of mass transfer in aqueous medium, which is the challenge of many organic reactions in aqueous medium and in the presence of heterogeneous medium. High catalytic activity was found for the catalyst and high to excellent efficiency was obtained for all quinazoline (68-94% yield) and acridine (66-97% yield) derivatives in short reaction times (less than 1 hour) under mild reaction conditions in the absence of any hazardous or expensive materials. There is not any noticeable by-product found whether for acridine or quinazoline derivatives, which reflects the high selectivity. Two reasonable mechanisms were proposed for the reactions based on observations from control experiments as well as literature reports. The catalyst could be easily recovered magnetically for at least six consecutive runs with insignificant reactivity loss.

5.
J Hazard Mater ; 400: 122985, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32580092

RESUMEN

A green protocol has been developed for preparation of the wide variety of colored xanthene derivatives using a new efficient magnetic solid acid catalyst bearing polyamidoamine dendrimer moiety as a nanoscopic compound. Dendrimers, highly symmetric molecules around a core and 3D spherical morphology, show interesting traits based on their functionalized groups on the branched surface. They can be designed to provide water soluble structures or pseudo-active sites of biomolecules. The catalyst was assembled via a polyamidoamine dendrimer immobilized on the surface of γ-Fe2O3 followed by the sulfonylation of the amine groups by chlorosulfonic acid resulting in γ-Fe2O3@PAMAM-SO3H. Herein, PAMAM dendrimer with repeating amine/amide branches as catchable sites of sulfonic acid groups was introduced as transformer of homogeneous to heterogeneous acidic catalysts. The physicochemical properties of synthesized catalyst were studied using by FT-IR, FE-SEM, XRD, VSM, EDS, TGA/DTG, and TEM. Finally, the catalytic activity of γ-Fe2O3@PAMAM-SO3H was evaluated for the preparation of xanthene derivatives via a one-pot, three components reaction of aromatic aldehydes with i) ß-naphthol, ii) cyclic 1,3-dicarbonyl, iii) ß-naphthol and cyclic 1,3-dicarbonyl compounds, iv) 2-hydroxy-1,4-naphthoquinone, leading to the eco-riendly preparation of the target compounds in good to excellent yields. The catalyst could be easily recycled for at least five consecutive runs without significant loss in its catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA