Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38616694

RESUMEN

Background: Lung cancer is one of the most dangerous diseases among cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have mentioned the connection between lung cancer and tuberculosis, and also the microRNAs that play a significant role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role on different genes on lung and tuberculosis diseases. Also determining the role of miR-34a and miR-182 in lung cancer and tuberculosis. Methods: Using the GEO database, the influential microRNA databases were studied in two diseases. Finally, regarding bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these microRNAs and their target genes was carefully evaluated using bioinformatics. The expression of microRNAs in the blood plasma of patients with lung cancer and tuberculosis and healthy people were investigated. Results: According to the GEO database, miR-34a and miR-182 are microRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, Diana, miRDB, galaxy, KEGG databases, the role of these microRNAs on genes and different molecular pathways and their effect on these microRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The P value amount for miR-182 was <0.0001 and for miR-34a was 0.3380. Conclusion: Reducing the expression pattern of these microRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these microRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.

2.
Immunotherapy ; 16(2): 75-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38112057

RESUMEN

Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.


A lot of research has been done to find a cure for lung cancer. Among the methods investigated is the treatment of cancer using a type of virus called an oncolytic virus (OV). Since tumors have unique properties, OVs tend to bind to them and activate immune cells to kill them. This article reviews the combination of OVs with other common cancer treatments which improves their effectiveness, causes fewer reactions and brings better results.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias Pulmonares/terapia , Inmunoterapia
3.
Tanaffos ; 22(1): 7-18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920308

RESUMEN

The correlation between tuberculosis (TB) and lung cancer (LC) in diagnosis, epidemiology, and treatment is still unclear. Based on different cohort and retrospective studies, this correlation could be justified by immune weakness because of exposure to TB which may increase the risk of LC. In this study, we tried to exhibit a prominent connection between TB and LC. The diagnosis and treatment of patients with concomitant TB and LC differ from patients with only one of the diseases. In this review, it was well clarified that the most practical diagnostic method for LC is chest tomography, biopsy, and histopathology, and for pulmonary TB sputum microscopic examination, Autofluorescence bronchoscopy (AFB), culture, and PCR. Also, immunological methods can be a good alternative for differential diagnosis. Most epidemiological studies were about concomitant TB and LC in TB-endemic areas, especially in the Middle East. The most suggested methods for definite treatment of LC are chemotherapy, radiotherapy, and surgery while for TB, a long course of anti-TB therapy can be used. Moreover, immunotherapy is considered a good treatment for lung cancer if the interferon-gamma release assay (IGRA) is negative.

4.
Hum Genomics ; 17(1): 54, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328914

RESUMEN

BACKGROUND: Clinical severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outcomes could be influenced by genetic polymorphisms in angiotensin I-converting enzyme (ACE1) and ACE2. This study aims to examine three polymorphisms (rs1978124, rs2285666, and rs2074192) on the ACE2 gene and ACE1 rs1799752 (I/D) in patients who have coronavirus disease 2019 (COVID-19) with various SARS-CoV-2 variants. METHODS: Based on polymerase chain reaction-based genotyping, four polymorphisms in the ACE1 and ACE2 genes have been identified in 2023 deceased patients and 2307 recovered patients. RESULTS: The ACE2 rs2074192 TT genotype was associated with the COVID-19 mortality in all three variants, whereas the CT genotype was associated with the Omicron BA.5 and Delta variants. ACE2 rs1978124 TC genotypes were related to COVID-19 mortality in the Omicron BA.5 and Alpha variants, but TT genotypes were related to COVID-19 mortality in the Delta variant. It was found that ACE2 rs2285666 CC genotypes were associated with COVID-19 mortality in Delta and Alpha variants, and CT genotypes in Delta variants. There was an association between ACE1 rs1799752 DD and ID genotypes in the Delta variant and COVID-19 mortality, whereas there was no association in the Alpha or Omicron BA.5 variants. In all variants of SARS-CoV-2, CDCT and TDCT haplotypes were more common. In Omicron BA.5 and Delta, CDCC and TDCC haplotypes were linked with COVID-19 mortality. In addition to COVID-19 mortality, the CICT, TICT, and TICC were significantly correlated. CONCLUSION: The ACE1/ACE2 polymorphisms had an impact on COVID-19 infection, and these polymorphisms had different effects in various SARS-CoV-2 variants. To confirm these results, however, more research needs to be conducted.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , COVID-19/mortalidad , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , SARS-CoV-2/genética
5.
Biointerphases ; 18(2): 021003, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944533

RESUMEN

Polyethersulfone (PES) membranes are widely used in medical devices, especially intravascular devices such as intravascular bioartificial pancreases. In the current work, the pure PES and PES-pyrolytic carbon (PyC) composite membranes were synthesized and permeability studies were conducted. In addition, the cytocompatibility and hemocompatibility of the pure PES and PES-PyC membranes were investigated. These materials were characterized using peripheral blood mononuclear cell (PBMC) activation, platelet activation, platelet adhesion, ß-cell viability and proliferation, and ß-cell response to hyperglycemia. The results showed that platelet activation decreased from 87.3% to 27.8%. Any alteration in the morphology of sticking platelets was prevented, and the number of attached platelets decreased by modification with PyC. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay corroborated that PBMC activation was encouraged by the PyC-modified PES membrane surface. It can be concluded that PES-modified membranes show higher hemocompatibility than pure PES membranes. ß-cells cultured on all the three membranes displayed a lower rate of proliferation although the cells on the PES-PyC (0.1 wt. %) membrane indicated a slightly higher viability and proliferation than those on the pure PES and PES-PyC (0.05 wt. %) membranes. It shows that the PES-PyC (0.1 wt. %) membrane possesses superior cytocompatibility over the other membranes.


Asunto(s)
Materiales Biocompatibles , Páncreas Artificial , Materiales Biocompatibles/farmacología , Leucocitos Mononucleares , Membranas Artificiales
6.
Respir Res ; 24(1): 55, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800962

RESUMEN

BACKGROUND: Lung cancer is one of the leading causes of death in the world and the deadliest of all cancers. Apoptosis is a key pathway in regulating the cell growth rate, proliferation, and occurrence of lung cancer. This process is controlled by many molecules, such as microRNAs and their target genes. Therefore, finding new medical approaches such as exploring diagnostic and prognostic biomarkers involved in apoptosis is needed for this disease. In the present study, we aimed to identify key microRNAs and their target genes that could be used in the prognosis and diagnosis of lung cancer. METHODS: Signaling pathways, genes, and microRNAs involved in the apoptotic pathway were identified by bioinformatics analysis and recent clinical studies. Bioinformatics analysis was performed on databases including NCBI, TargetScan, UALCAN, UCSC, KEGG, miRPathDB, and Enrichr, and clinical studies were extracted from PubMed, web of science, and SCOPUS databases. RESULTS: NF-κB, PI3K/AKT, and MAPK pathways play critical roles in the regulation of apoptosis. MiR-146b, 146a, 21, 23a, 135a, 30a, 202, and 181 were identified as the involved microRNAs in the apoptosis signaling pathway, and IRAK1, TRAF6, Bcl-2, PTEN, Akt, PIK3, KRAS, and MAPK1 were classified as the target genes of the mentioned microRNAs respectively. The essential roles of these signaling pathways and miRNAs/target genes were approved through both databases and clinical studies. Moreover, surviving, living, BRUCE, and XIAP was the main inhibitor of apoptosis which act by regulating the apoptosis-involved genes and miRNAs. CONCLUSION: Identifying the abnormal expression and regulation of miRNAs and signaling pathways in apoptosis of lung cancer can represent a novel class of biomarkers that can facilitate the early diagnosis, personalized treatment, and prediction of drug response for lung cancer patients. Therefore, studying the mechanisms of apoptosis including signaling pathways, miRNAs/target genes, and the inhibitors of apoptosis are advantageous for finding the most practical approach and reducing the pathological demonstrations of lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Detección Precoz del Cáncer , Neoplasias Pulmonares/metabolismo , Transducción de Señal/genética , Apoptosis/genética
7.
Sci Rep ; 12(1): 18063, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302939

RESUMEN

Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , ARN Largo no Codificante , Carcinoma Pulmonar de Células Pequeñas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas/genética , Transcriptoma , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Encefálicas/genética , Encéfalo/metabolismo
8.
Sci Rep ; 12(1): 9591, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688860

RESUMEN

Drug resistance in tuberculosis is exacerbating the threat this disease is posing to human beings. Antibiotics that were once effective against the causative agent, Mycobacterium tuberculosis (Mtb), are now no longer usable against multi- and extensively drug-resistant strains of this pathogen. To address this issue, new drug combinations and novel methods for targeted drug delivery could be of considerable value. In addition, studies have shown that the use of the antidepressant drug fluoxetine, a serotonin reuptake inhibitor, can be useful in the treatment of infectious diseases, including bacterial infections. In this study, an isoniazid and fluoxetine-conjugated multi-walled carbon nanotube nanofluid were designed to increase drug delivery efficiency alongside eliminating drug resistance in vitro. The prepared nanofluid was tested against Mtb. Expression levels of inhA and katG mRNAs were detected by Real-time PCR. ELISA was applied to measure levels of cytokine secretion (TNF-α, and IL-6) from infected macrophages treated with the nano delivery system. The results showed that these nano-drug delivery systems are effective for fluoxetine at far lower doses than for free drugs. Fluoxetine also has an additive effect on the effect of isoniazid, and their concomitant use in the delivery system can have significant effects in treating infection of all clinical strains of Mtb. In addition, it was found that the expression of isoniazid resistance genes, including inhA, katG, and the secretion of cytokines TNFα and IL6 under the influence of this drug delivery system is well regulated. It was shown that the drug conjugation can improve the antibacterial activity of them in all strains and these two drugs have an additive effect on each other both in free and conjugated forms. This nano-drug delivery method combined with host targeted molecules could be a game-changer in the development of a new generation of antibiotics that have high therapeutic efficiencies, low side effects, and the potential to overcome the problem of drug resistance.


Asunto(s)
Mycobacterium tuberculosis , Nanopartículas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Fluoxetina/farmacología , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mutación , Nanopartículas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
9.
BMC Microbiol ; 22(1): 96, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410123

RESUMEN

BACKGROUND: Mycobacterium fortuitum (M. fortuitum) is a bacterium, which can cause infections in many anatomical regions of the body, including the skin, lymph nodes, and joints. This bacterium, which belongs to a group of bacteria known as nontuberculous mycobacteria, is regarded as an important nosocomial pathogen worldwide owing to its increasing antibiotic resistance. Recently, the antimicrobial effects of carbon nanotubes have been reported in numerous studies. These nanotubes can be very useful in drug delivery; besides, they exhibit unique properties against multidrug-resistant bacterial infections. This study aimed to investigate the antimicrobial effects of carboxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH) to reduce antibiotic resistance. METHODS: In this study, antibacterial effects of nanofluids containing functionalized MWCNTs at initial concentration of 2 mg/mL and serial dilutions of 54, 28.5, 14.25, 7.12, 3.5 µg/mL, antibiotics alone and combination of nanofluids with antibiotics were investigated. Standard and resistant strains of M. fortuitum were obtained from the microbial bank of the Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran. RESULTS: It was observed that nanofluid containing MWCNT-COOH can exert antimicrobial effects on M. fortuitum and significantly reduce bacterial resistance to antibiotics including kanamycin and streptomycin. In the presence of antibiotics and nanofluids containing MWCNT-COOH at a dose of 28.5 µg/mL, no growth was observed. CONCLUSION: One of the main antimicrobial mechanisms of MWCNT-COOH is penetration into the bacterial cell wall. In this study, by using the nanofluid containing MWCNT-COOH with increased stability, the antibiotic resistance of M. fortuitum was significantly reduced at lower dilutions compared to the antibiotic alone.


Asunto(s)
Antiinfecciosos , Mycobacterium fortuitum , Nanotubos de Carbono , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Farmacorresistencia Microbiana , Nanotubos de Carbono/química
10.
Sci Rep ; 11(1): 24419, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952904

RESUMEN

In this research, a new nano drug-based multi-walled carbon nanotubes (MWCNTs) was prepared and evaluated qualitatively. Bromocriptine (BRC) was conjugated to functionalized carbon nanotubes. Then, the CHNS, FT-IR, SEM, and RAMAN tests for characterization of the conjugated drug were done. The nanofluid-containing nano-drug was evaluated on lung cancer cells (A549 & QU-DB) and MRC5 by MTT and flow cytometry tests. Then, the gene expression studies of dopamine receptor genes were done before and after nano-drug treatment. After that, a western blotting test was carried out for further investigation of dopamine receptors protein production. Finally, Bax and Bcl-2 secretion were measured by the ELISA method in cells affected by MWCNTs-BRC Nf compared to untreated cells. The results showed that the nano-drug had a significant lethal effect on cancer cells, while it had no toxicity on MRC5. Also, the nano-drug could significantly induce apoptosis in lung cancer cells at a lower dose compared to the drug alone. In this study, a targeted nano-drug delivery system was designed, and its performance was evaluated based on neurotransmitter pathways, and the results showed that it may be useful in the treatment of lung cancer. However, additional studies on animal models are underway.


Asunto(s)
Bromocriptina/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Línea Celular Tumoral , Humanos , Nanotubos de Carbono
11.
J Infect Public Health ; 14(10): 1284-1298, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34420903

RESUMEN

Coronaviruses are a large family of viruses that cause illnesses ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and the 2019 novel coronavirus infection (COVID-19). Currently, there is no analyzed data to examine the outbreak of COVID-19 by continent and no determination of prevalence trends; this article reviews COVID-19 epidemiology and immunology. Original research, reviews, governmental databases, and treatment guidelines are analyzed to present the epidemiology and immunology of COVID-19. Reports from patients who were COVID-19 infected showed typical symptoms of neutrophilia, lymphopenia, and increased systemic inflammatory proteins of IL-6 and C reactive protein (CRP). These observations agree with the results of severe conditions of MERS or lethal cases of SARS, in which there is an increased presence of neutrophils and macrophages in the airways. Additionally, analyzed data showed that Europe (49.37%), the Americas (27.4%), and Eastern Mediterranean (10.07%) had the most cumulative total per 100,000 population confirmed cases, and Africa (6.9%), Western Pacific (3.46%), and South-East Asia (2.72%) had the lowest cumulative total per 100,000 population confirmed cases. In general, the trend lines showed that the number of confirmed cases (cumulative total) and deaths (cumulative total) would decrease eventually.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , África , Brotes de Enfermedades , Europa (Continente) , Humanos , SARS-CoV-2
12.
Clin Epigenetics ; 13(1): 65, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781317

RESUMEN

Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.


Asunto(s)
Asma/genética , Asma/fisiopatología , Metilación de ADN/genética , Acetilación , Epigenómica , Expresión Génica , Humanos
13.
J Mol Model ; 27(3): 92, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619651

RESUMEN

In this research, a zinc oxide/copper oxide/graphene oxide (ZnO/CuO/GO) nanophotocatalyst was synthesized for photodegradation of aniline as a pollutant, upon exposure to ultraviolet light (UV). Three variables including initial aniline concentration, the nanophotocatalyst dosage, and pH were designed. The statistical test and optimal conditions were determined. The consequences specified that the optimum values of pH, initial aniline concentration, the dosage of nanophotocatalyst, and the reaction time were 6, 150 ppm, 1 g/L, and 3 h, respectively. The obtained results revealed that the photodegradation of aniline was enhanced with doping zinc oxide and CuO on the graphene oxide. Under optimal conditions, 97% photodegradation of aniline was observed. The mechanism of aniline degradation with nanophotocatalyst was evaluated by molecular dynamic (MD) graphs. The interactions between nanophotocatalysts and aniline were considered by energy, density graph.

14.
Expert Rev Proteomics ; 18(1): 49-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33612047

RESUMEN

INTRODUCTION: Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED: In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-ß, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1ß and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION: In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.


Asunto(s)
Citocinas/análisis , Neoplasias Pulmonares/química , Neoplasias Pulmonares/metabolismo , Proteómica , Animales , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico
15.
Iran J Public Health ; 50(11): 2292-2301, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35223604

RESUMEN

BACKGROUND: We aimed to prepare a nanofluid, containing f-MWCNTs, and investigate the antibacterial efficacy of f-MWCNTs+ ciprofloxacin (cip) on Klebsiella pneumoniae by evaluating the virulence gene expression. METHODS: This study was carried out from 2019 to 2020, in the Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran. The nanofluid containing antibiotic and f-MWCNTs were prepared by the ultrasonic method. The minimum inhibitory concentrations (MICs) of ciprofloxacin and f-MWCNTs were determined using the broth micro dilution MIC tests. For examining the antibacterial effects, the expression level of virulence genes, under the influence of f-MWCNTs, was evaluated by a real-time PCR. RESULTS: The effect of 8 µg/ml ciprofloxacin + 400 µg/ml f-MWCNTs, completely inhibited the growth of the resistant isolate of K. pneumoniae, while, in the ATCC 700,603 isolate, 2 µg/ml ciprofloxacin with 100 µg/ml f-MWCNT could inhibit a bacterial growth. In the resistant K. pneumoniae clinical isolate, after f-MWCNT+cip treatment, the expression of fimA, fimD, wza, and wzi genes was significantly downregulated, compared to the ciprofloxacin treatment, and upregulated, compared to the negative control. For the ATCC 700,603 isolate treated with f-MWCNT+cip, the expression of fimA, fimD and wza virulence genes showed upregulation, compared to the negative control and downregulated in comparison with the ciprofloxacin treatment. CONCLUSION: Simultaneous treatment of resistant isolate of K. pneumoniae with f-MWCNTs +antibiotic could improve the effectiveness of antibiotic at lower doses, due to the reduced expression of virulence genes in comparison with antibiotic treatment, besides the increased cell wall permeability to antibiotics.

16.
Tanaffos ; 20(3): 197-208, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35382078

RESUMEN

Tuberculosis (TB) and non-small cell lung cancer (NSCLC) are two major contributors to mortality and morbidity worldwide. In this regard, TB and NSCLC have similar symptoms, and TB has symptoms that are identical to malignancy; therefore, sometimes it is mistakenly diagnosed as lung cancer. Moreover, patients with active pulmonary TB are at a higher risk of dying due to lung cancer. In addition, several signaling pathways involved in TB and NSCLC have been identified. Also, the miRNAs are biological molecules shown to play essential roles in the above-mentioned diseases through targeting the signaling pathways' genes. Most of the pathways affected by miRNAs are immune responses such as autophagy and apoptosis in TB and NSCLC, respectively. Several studies have separately investigated the expression of miRNAs profile in patients with NSCLC and infectious TB. In this critical review, we attempted to gather common miRNAs between TB and NSCLC and to explain the involved-pathways, which are affected by miRNAs in both TB and NSCLC. Results of this critical review show that the expressions of miR-155, miR-146a, miR-125b, miR-30a, miR-29a, and miR-Let7 have significantly changed in TB and NSCLC. The data suggest that miRNAs expression may provide a new method for screening or differential diagnosis of NSCLC and TB.

17.
Tanaffos ; 20(2): 86-98, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34976079

RESUMEN

BACKGROUND: In cystic fibrosis patients, the mucus is an excellent place for opportunistic bacteria and pathogens to cover. Chronic infections of upper and lower airways play a critical role in the mortality of cystic fibrosis. This study aimed to introduce the microbiota profiles in patients with cystic fibrosis. MATERIALS AND METHODS: In this study, a comprehensive literature search was done for studies on upper and lower airway microbiota in cystic fibrosis patients. International and national databases were searched for the following MeSH words: microbiota, microbiome, upper airway, lower airway, cystic fibrosis, cystic fibrosis, upper airway microbiome, lower airway microbiome, microbiome pattern in cystic fibrosis, microbiome pattern in cystic fibrosis, upper airway microbiota, lower airway microbiota, and microbiota pattern. RESULTS: Streptococcus spp. are in significantly higher relative abundance in infants and children with cystic fibrosis; however, Pseudomonas spp. are in higher relative abundance in adults with cystic fibrosis. Molecular diagnostic techniques can be remarkably accurate in detecting microbial strains. CONCLUSION: For the detection and isolation of most bacterial species, independent-culture methods in addition to the standard culture method are recommended, and sampling should include both upper and lower airways.

18.
Tanaffos ; 20(2): 126-133, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34976083

RESUMEN

BACKGROUND: Dopamine and serotonin receptors are present in lymphocytes, macrophages, and neutrophils, and have a mediating role in the immune system to respond to infections, including bacterial tuberculosis. MATERIALS AND METHODS: In this study, at first, the changes in the expression pattern of 5 dopamine and 2 serotonin (5HTR2B & 5HTR2C) gene receptors were examined in the two groups of healthy and Tuberculosis patients using Real-Time PCR. Then pharmacogenetic studies aimed to induce autophagy on a lung monocyte cell line (THP1) infected with the standard strain of Mycobacterium tuberculosis (H37RV) were performed. Stimulation of the pro-inflammatory pathway by secreting cytokines before and after drug efficacy was investigated. RESULTS: According to the result, dopamine receptor 2 genes showed decreased expression in patients with tuberculosis compared to normal individuals, and serotonin receptor genes showed increased expression. Additionally, with the effects of Bromocriptine and Fluoxetine, pro-inflammatory pathways were activated in macrophages infected with H37RV, and ELISA results showed that the levels of IL6 and TNFα secreted in these cells were significantly increased. CONCLUSION: According to the results, these receptors agonists or antagonists can activate the autophagy pathway to kill TB bacteria.

19.
Ther Clin Risk Manag ; 16: 933-946, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116543

RESUMEN

BACKGROUND: The coronavirus 2019 (COVID-19) has been known as a pandemic disease by the World Health Organization (WHO) worldwide. The drugs currently used for treatment of COVID-19 are often selected and tested based on their effectiveness in other diseases such as influenza and AIDS and their major identified targets are viral protease, host cell produced protease, viral RNA polymerase, and the interaction site of viral protein with host cell receptors. Until now, there are no approved therapeutic drugs for definitive treatment of this dangerous disease. METHODS: In this article, all of the documentary information, such as clinical trials, original research and reviews, government's database, and treatment guidelines, were reviewed critically and comprehensively. Moreover, it was attempted to present the most common and effective drugs and strategies, to suggest the possible treatment way of COVID19 by focusing on the body's defense mechanism against pathogens. RESULTS: Antiviral drugs and immune-modulatory agents with the traditional medicines using the natural compound are usual accessible treatments. Accordingly, they have better beneficence due to the large existence studies, long time follow-ups, proximity to the natural system, and the normal physiological routine of the pathogen and host interactions. Besides, the serotonergic and dopaminergic pathways are considered as attractive targets to treat human immune, infectious, and cancerous diseases. Fluoxetine, as a host-targeted small molecule with immunomodulatory action, may be known as effective drug for treatment and prevention of COVID19 disease, in combination with antiviral drugs and natural compounds. CONCLUSION: Co-administration of fluoxetine in the treatment of COVID19 could be considered due to the possibility of its interaction with ACE2 receptors, immune-modulatory function, and a proper immune response at the right time. Fluoxetine plays a beneficial role in reducing stress due to fear of infecting by COVID19 or worsening the disease and psychological support for the affected patients.

20.
Int J Nanomedicine ; 15: 7063-7078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061368

RESUMEN

The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Nanotubos de Carbono , Animales , Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Fibrosis , Humanos , Neoplasias Pulmonares/patología , Nanotubos de Carbono/efectos adversos , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...