Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205605

RESUMEN

Biological composites (biocomposites) possess ultra-thin, irregular-shaped, energy dissipating interfacial regions that grant them crucial mechanical capabilities. Identifying the dynamic (viscoelastic) modulus of these interfacial regions is considered to be the key toward understanding the underlying structure-function relationships in various load-bearing biological materials including mollusk shells, arthropod cuticles, and plant parts. However, due to the submicron dimensions and the confined locations of these interfacial regions within the biocomposite, assessing their mechanical characteristics directly with experiments is nearly impossible. Here, we employ composite-mechanics modeling, analytical formulations, and numerical simulations to establish a theoretical framework that links the interfacial dynamic modulus of a biocomposite to the extrinsic characteristics of a larger-scale biocomposite segment. Accordingly, we introduce a methodology that enables back-calculating (via simple linear scaling) of the interfacial dynamic modulus of biocomposites from their far-field dynamic mechanical analysis. We demonstrate its usage on zigzag-shaped interfaces that are abundant in biocomposites. Our theoretical framework and methodological approach are applicable to the vast range of biocomposites in natural materials; its essence can be directly employed or generally adapted into analogous composite systems, such as architected nanocomposites, biomedical composites, and bioinspired materials.

2.
J Mech Behav Biomed Mater ; 114: 104209, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33309000

RESUMEN

Biocomposites comprise highly stiff reinforcement elements connected by a compliant matrix material. While the interfacial elastic properties of these biocomposites play a key role in determining the mechanical properties of the entire biocomposite, these properties cannot be measured directly from standard nanomechanical experiments. Developing a method for extracting the interfacial elastic properties in biocomposites is, therefore, a major objective of cutting-edge biomaterials science. Here, using mechanical modeling and Finite-Element simulations, we analyze the interfacial force-depth relationships, stress distribution, and indentation modulus of standard nanoindentation testing in biocomposites, and we establish an analytical framework that connects these results to the elastic properties of the underlying matrix and reinforcement components. The resulting analytical framework is general and holds for a broad range of biocomposites, thus enabling a deeper understanding of the mechanical characteristics of functional interfaces in various biomaterials. Moreover, this framework can be adapted to account for synthetic, microscale, and nanoscale composite materials, and thereby promotes the development of advanced interfacial configurations with specialized mechanical capabilities.


Asunto(s)
Materiales Biocompatibles , Módulo de Elasticidad
3.
Ann Bot ; 119(6): 1021-1033, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158449

RESUMEN

Background and Aims: Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods: A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Key Results: Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions: The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution.


Asunto(s)
Evolución Biológica , Pared Celular/ultraestructura , Helechos/anatomía & histología , Magnoliopsida/anatomía & histología , Estomas de Plantas/ultraestructura , Helechos/ultraestructura , Magnoliopsida/ultraestructura , Microscopía Electrónica de Rastreo , Poaceae/anatomía & histología , Poaceae/ultraestructura
4.
J Mech Behav Biomed Mater ; 73: 68-75, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28162940

RESUMEN

The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations.


Asunto(s)
Exoesqueleto/fisiología , Piel , Tortugas , Animales , Fenómenos Biomecánicos , Dureza , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA