Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 161: 103698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483517

RESUMEN

Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster - two of the most represented TF families in fungi - indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.


Asunto(s)
Basidiomycota , Populus , Animales , Basidiomycota/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Estadios del Ciclo de Vida , Enfermedades de las Plantas/microbiología , Populus/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
4.
Sci Rep ; 11(1): 15345, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321531

RESUMEN

The Eurasian plant Stipa capillata is the most widespread species within feather grasses. Many taxa of the genus are dominants in steppe plant communities and can be used for their classification and in studies related to climate change. Moreover, some species are of economic importance mainly as fodder plants and can be used for soil remediation processes. Although large-scale molecular data has begun to appear, there is still no complete or draft genome for any Stipa species. Thus, here we present a single-molecule long-read sequencing dataset generated using the Pacific Biosciences Sequel System. A draft genome of about 1004 Mb was obtained with a contig N50 length of 351 kb. Importantly, here we report 81,224 annotated protein-coding genes, present 77,614 perfect and 58 unique imperfect SSRs, reveal the putative allopolyploid nature of S. capillata, investigate the evolutionary history of the genus, demonstrate structural heteroplasmy of the chloroplast genome and announce for the first time the mitochondrial genome in Stipa. The assembled nuclear, mitochondrial and chloroplast genomes provide a significant source of genetic data for further works on phylogeny, hybridisation and population studies within Stipa and the grass family Poaceae.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Genoma de Planta , Proteínas de Plantas/genética , Poaceae/genética , Mapeo Contig , Europa (Continente) , Tamaño del Genoma , Heteroplasmia , Repeticiones de Microsatélite , Filogenia , Fitomejoramiento/métodos , Proteínas de Plantas/clasificación , Ploidias , Poaceae/clasificación
5.
Front Genet ; 12: 662239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079582

RESUMEN

Gene regulatory factors (GRFs), such as transcription factors, co-factors and histone-modifying enzymes, play many important roles in modifying gene expression in biological processes. They have also been proposed to underlie speciation and adaptation. To investigate potential contributions of GRFs to primate evolution, we analyzed GRF genes in 27 publicly available primate genomes. Genes coding for zinc finger (ZNF) proteins, especially ZNFs with a Krüppel-associated box (KRAB) domain were the most abundant TFs in all genomes. Gene numbers per TF family differed between all species. To detect signs of positive selection in GRF genes we investigated more than 3,000 human GRFs with their more than 70,000 orthologs in 26 non-human primates. We implemented two independent tests for positive selection, the branch-site-model of the PAML suite and aBSREL of the HyPhy suite, focusing on the human and great ape branch. Our workflow included rigorous procedures to reduce the number of false positives: excluding distantly similar orthologs, manual corrections of alignments, and considering only genes and sites detected by both tests for positive selection. Furthermore, we verified the candidate sites for selection by investigating their variation within human and non-human great ape population data. In order to approximately assign a date to positively selected sites in the human lineage, we analyzed archaic human genomes. Our work revealed with high confidence five GRFs that have been positively selected on the human lineage and one GRF that has been positively selected on the great ape lineage. These GRFs are scattered on different chromosomes and have been previously linked to diverse functions. For some of them a role in speciation and/or adaptation can be proposed based on the expression pattern or association with human diseases, but it seems that they all contributed independently to human evolution. Four of the positively selected GRFs are KRAB-ZNF proteins, that induce changes in target genes co-expression and/or through arms race with transposable elements. Since each positively selected GRF contains several sites with evidence for positive selection, we suggest that these GRFs participated pleiotropically to phenotypic adaptations in humans.

6.
Life (Basel) ; 10(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352712

RESUMEN

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

7.
Drugs R D ; 20(4): 369-376, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33211277

RESUMEN

BACKGROUND: Pancreatic enzyme-replacement therapy (PERT), provided as pancreatin to patients with pancreatic exocrine insufficiency (PEI), is considered an essential substitute for the pivotal physiological function the pancreas fulfills in digestion. PEI involves a reduction in the synthesis and secretion of pancreatic enzymes (lipase, protease, amylase), which leads to an inadequate enzymatic response to a meal and consequently to maldigestion and malabsorption of nutrients. The efficacy of PERT is strongly dependent on enzyme activity, dissolution, and pancreatin particle size. OBJECTIVE: The physiological properties of eight pancreatin preparations (nine batches; five different brands) available in Russia and CIS (Commonwealth of Independent States: Armenia, Azerbaijan, Belarus, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Uzbekistan) were investigated. METHODS: The lipase activity, dissolution, and particle size distribution of samples from multiple batches of pancreatin of different strengths were measured. RESULTS: Regarding lipase activities, all pancreatin preparations except Micrazim® matched the labeled content. Considerable differences were observed in particle size and dissolution. CONCLUSION: Pancreatin preparations available in Russia and CIS demonstrate product-to-product and batch-to-batch variability regarding the measured properties of lipase activity, dissolution, and particle size. This may impact the efficacy of PERT and therefore clinical outcomes.


Asunto(s)
Fármacos Gastrointestinales/química , Fármacos Gastrointestinales/metabolismo , Lipasa/análisis , Lipasa/metabolismo , Pancreatina/química , Pancreatina/metabolismo , Comunidad de Estados Independientes , Liberación de Fármacos , Insuficiencia Pancreática Exocrina/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Humanos , Pancreatina/uso terapéutico , Tamaño de la Partícula , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Federación de Rusia
9.
Elife ; 72018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311911

RESUMEN

The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model, we aim understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. Using genome-wide ChIP-seq analysis of acetylated histone H3, we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, in amino acid and nitrogen metabolism, in signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.


Asunto(s)
Aspergillus nidulans/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Metabolismo Secundario , Streptomyces/metabolismo , Acetilación , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Genoma Fúngico , Histidina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Mitocondrias/metabolismo , Familia de Multigenes , Nitrógeno/metabolismo , Filogenia , Transducción de Señal , Factores de Transcripción/metabolismo
10.
Microbiology (Reading) ; 164(1): 65-77, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205129

RESUMEN

Production of basidiomycete atromentin-derived pigments like variegatic acid (pulvinic acid-type) and involutin (diarylcyclopentenone) from the brown-rotter Serpula lacrymans and the ectomycorrhiza-forming Paxillus involutus, respectively, is induced by complex nutrition, and in the case of S. lacrymans, bacteria. Pigmentation in S. lacrymans was stimulated by 13 different bacteria and cell-wall-damaging enzymes (lytic enzymes and proteases), but not by lysozyme or mechanical damage. The use of protease inhibitors with Bacillus subtilis or heat-killed bacteria during co-culturing with S. lacrymans significantly reduced pigmentation indicating that enzymatic hyphal damage and/or released peptides, rather than mechanical injury, was the major cause of systemic pigment induction. Conversely, no significant pigmentation by bacteria was observed from P. involutus. We found additional putative transcriptional composite elements of atromentin synthetase genes in P. involutus and other ectomycorrhiza-forming species that were absent from S. lacrymans and other brown-rotters. Variegatic and its precursor xerocomic acid, but not involutin, in return inhibited swarming and colony biofilm spreading of Bacillus subtilis, but did not kill B. subtilis. We suggest that dissimilar pigment regulation by fungal lifestyle was a consequence of pigment bioactivity and additional promoter motifs. The focus on basidiomycete natural product gene induction and regulation will assist in future studies to determine global regulators, signalling pathways and associated transcription factors of basidiomycetes.


Asunto(s)
Agaricales/metabolismo , Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Interacciones Microbianas/fisiología , Pigmentos Biológicos/genética , Agaricales/clasificación , Agaricales/genética , Agaricales/crecimiento & desarrollo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/fisiología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Benzoquinonas/metabolismo , Pared Celular/metabolismo , Técnicas de Cocultivo , Simulación por Computador , Secuencia Conservada , Bases de Datos Genéticas , Proteínas Fúngicas/genética , Interacciones Microbianas/genética , Familia de Multigenes/genética , Fenoles/metabolismo , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/metabolismo , Regiones Promotoras Genéticas
11.
Front Genet ; 8: 53, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523015

RESUMEN

Transcription factors (TFs) are essential regulators of gene expression in a cell; the entire repertoire of TFs (TFome) of a species reflects its regulatory potential and the evolutionary history of the regulatory mechanisms. In this work, I give an overview of fungal TFs, analyze TFome dynamics, and discuss TF families and types of particular interest. Whole-genome annotation of TFs in more than 200 fungal species revealed ~80 families of TFs that are typically found in fungi. Almost half of the considered genomes belonged to basidiomycetes and zygomycetes, which have been underrepresented in earlier annotations due to dearth of sequenced genomes. The TFomes were analyzed in terms of expansion strategies genome- and lineage-wise. Generally, TFomes are known to correlate with genome size; but what happens to particular families when a TFome is expanding? By dissecting TFomes into single families and estimating the impact of each of them, I show that in fungi the TFome increment is largely limited to three families (C6 Zn clusters, C2H2-like Zn fingers, and homeodomain-like). To see whether this is a fungal peculiarity or a ubiquitous eukaryotic feature, I also analyzed metazoan TFomes, where I observed a similar trend (limited number of TFome-shaping families) but also some important differences connected mostly with the increased complexity in animals. The expansion strategies of TF families are lineage-specific; I demonstrate how the patterns of the TF families' distributions, designated as "TF signatures," can be used as a taxonomic feature, e.g., for allocation of uncertain phyla. In addition, both fungal and metazoan genomes contain an intriguing type of TFs. While usually TFs have a single DNA-binding domain, these TFs possess two (or more) different DNA-binding specificities. I demonstrate that dual-specific TFs comprising various combinations of all major TF families are a typical feature of fungal and animal genomes and have an interesting evolutionary history involving gene duplications and domain losses.

12.
Nucleic Acids Res ; 45(W1): W36-W41, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28460038

RESUMEN

Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.


Asunto(s)
Metabolismo Secundario/genética , Programas Informáticos , Algoritmos , Antibacterianos/biosíntesis , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Codón , Genes , Internet , Péptido Sintasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Sintasas Poliquetidas/química , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Terpenos/química
14.
BMC Genomics ; 17(1): 953, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27875982

RESUMEN

BACKGROUND: The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. RESULTS: The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type. CONCLUSION: Both cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , Genoma Fúngico , Genómica , Especificidad del Huésped , Filogenia , Poaceae/microbiología , Secuencia de Aminoácidos , Ascomicetos/metabolismo , ADN Intergénico , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genómica/métodos , Familia de Multigenes , Metabolismo Secundario/genética
15.
Environ Microbiol ; 18(12): 5218-5227, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27699944

RESUMEN

Basidiomycete fungi are characterized ecologically for their vital functional role in ecosystem carbon recycling and chemically for their capacity to produce a diverse array of small molecules. Chromophoric natural products derived from the quinone precursor atromentin, such as variegatic acid and involutin, have been shown to function in redox cycling. Yet, in the context of an inter-kingdom natural system these pigments are still elusive. Here, we co-cultured the model saprotrophic basidiomycete Serpula lacrymans with an ubiquitous terrestrial bacterium, either Bacillus subtilis, Pseudomonas putida, or Streptomyces iranensis. For each, there was induction of the gene cluster encoding a non-ribosomal peptide synthetase-like enzyme (atromentin synthetase) and an aminotransferase which together produce atromentin. Correspondingly, during co-culturing there was an increase in secreted atromentin-derived pigments, i.e., variegatic, xerocomic, isoxerocomic, and atromentic acid. Bioinformatic analyses from 14 quinone synthetase genes, twelve of which are encoded in a cluster, identified a common promoter motif indicating a general regulatory mechanism for numerous basidiomycetes.


Asunto(s)
Bacillus subtilis/fisiología , Basidiomycota/metabolismo , Benzoquinonas/metabolismo , Pigmentos Biológicos/biosíntesis , Pseudomonas putida/fisiología , Streptomyces/fisiología , Bacillus subtilis/crecimiento & desarrollo , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , Técnicas de Cocultivo , Familia de Multigenes , Oxidación-Reducción , Pseudomonas putida/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo
16.
Mol Microbiol ; 102(2): 321-335, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393422

RESUMEN

Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region.


Asunto(s)
Aspergillus fumigatus/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Melaninas/biosíntesis , Aspergillus fumigatus/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Vías Biosintéticas , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Melaninas/genética , Melaninas/metabolismo , Familia de Multigenes , Pigmentación , Unión Proteica , Dominios Proteicos , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo
17.
18.
Front Microbiol ; 7: 570, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148247

RESUMEN

In the emerging field of systems biology of fungal infection, one of the central roles belongs to the modeling of gene regulatory networks (GRNs). Utilizing omics-data, GRNs can be predicted by mathematical modeling. Here, we review current advances of data-based reconstruction of both small-scale and large-scale GRNs for human pathogenic fungi. The advantage of large-scale genome-wide modeling is the possibility to predict central (hub) genes and thereby indicate potential biomarkers and drug targets. In contrast, small-scale GRN models provide hypotheses on the mode of gene regulatory interactions, which have to be validated experimentally. Due to the lack of sufficient quantity and quality of both experimental data and prior knowledge about regulator-target gene relations, the genome-wide modeling still remains problematic for fungal pathogens. While a first genome-wide GRN model has already been published for Candida albicans, the feasibility of such modeling for Aspergillus fumigatus is evaluated in the present article. Based on this evaluation, opinions are drawn on future directions of GRN modeling of fungal pathogens. The crucial point of genome-wide GRN modeling is the experimental evidence, both used for inferring the networks (omics 'first-hand' data as well as literature data used as prior knowledge) and for validation and evaluation of the inferred network models.

19.
PLoS One ; 11(3): e0150701, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26960149

RESUMEN

For many pathogenic fungi, siderophore-mediated iron acquisition is essential for virulence. The process of siderophore production and further mechanisms to adapt to iron limitation are strictly controlled in fungi to maintain iron homeostasis. Here we demonstrate that the human pathogenic dermatophyte Arthroderma benhamiae produces the hydroxamate siderophores ferricrocin and ferrichrome C. Additionally, we show that the iron regulator HapX is crucial for the adaptation to iron starvation and iron excess, but is dispensable for virulence of A. benhamiae. Deletion of hapX caused downregulation of siderophore biosynthesis genes leading to a decreased production of siderophores during iron starvation. Furthermore, HapX was required for transcriptional repression of genes involved in iron-dependent pathways during iron-depleted conditions. Additionally, the ΔhapX mutant of A. benhamiae was sensitive to high-iron concentrations indicating that HapX also contributes to iron detoxification. In contrast to other pathogenic fungi, HapX of A. benhamiae was redundant for virulence and a ΔhapX mutant was still able to infect keratinized host tissues in vitro. Our findings underline the highly conserved role of the transcription factor HapX for maintaining iron homeostasis in ascomycetous fungi but, unlike in many other human and plant pathogenic fungi, HapX of A. benhamiae is not a virulence determinant.


Asunto(s)
Arthrodermataceae/patogenicidad , Proteínas Fúngicas/metabolismo , Homeostasis , Hierro/metabolismo , Arthrodermataceae/genética , Arthrodermataceae/crecimiento & desarrollo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Hifa/efectos de los fármacos , Hifa/fisiología , Hierro/farmacología , Queratinas/farmacología , Mutación/genética , Pigmentación/efectos de los fármacos , Homología de Secuencia de Aminoácido , Sideróforos/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología , Virulencia/efectos de los fármacos , Virulencia/genética
20.
Mol Microbiol ; 101(1): 92-108, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991818

RESUMEN

Aspergillus fumigatus is the predominant airborne pathogenic fungus causing invasive aspergillosis in immunocompromised patients. During infection A. fumigatus has to adapt to oxygen-limiting conditions in inflammatory or necrotic tissue. Previously, we identified a mitochondrial protein to be highly up-regulated during hypoxic adaptation. Here, this protein was found to represent the novel oxidoreductase HorA. In Saccharomyces cerevisiae a homologue was shown to play a role in biosynthesis of coenzyme Q. Consistently, reduced coenzyme Q content in the generated ΔhorA mutant indicated a respective function in A. fumigatus. Since coenzyme Q is involved in cellular respiration and maintaining cellular redox homeostasis, the strain ΔhorA displayed an impaired response to both oxidative and reductive stress, a delay in germination and an accumulation of NADH. Moreover, an increased resistance against antifungal drugs was observed. All phenotypes were completely reversed by the addition of the synthetic electron carrier menadione. The deletion strain ΔhorA showed significantly attenuated virulence in two murine infection models of invasive pulmonary aspergillosis. Therefore, the biosynthesis of coenzyme Q and, particularly, the fungal-specific protein HorA play a crucial role in virulence of A. fumigatus. Due to its absence in mammals, HorA might represent a novel therapeutic target against fungal infections.


Asunto(s)
Aspergillus fumigatus/metabolismo , Azoles/farmacología , Oxidorreductasas/metabolismo , Ubiquinona/análogos & derivados , Animales , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Hipoxia de la Célula/fisiología , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Aspergilosis Pulmonar Invasiva/microbiología , Ratones , Oxidorreductasas/genética , Ubiquinona/biosíntesis , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...