Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Pest Manag Sci ; 77(4): 1829-1838, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33270979

RESUMEN

BACKGROUND: Cotton has been increasingly harmed by the mirid bug (Lygus pratensis Linnaeus) in Xinjiang Uyghur Autonomous Region, China. Using trap plants within or around the border of the cotton may be a beneficial management strategy for this pest of cotton. RESULTS: The potential of safflower (Carthamus tinctorius Linn) as a trap plant for managing L. pratensis was evaluated in laboratory and field experiments. Y-tube olfactometer assays demonstrated that L. pratensis was highly attracted to volatiles derived from safflower. Field experiments showed that safflower plots hosted more L. pratensis (adults and nymphs) than cotton plots. Early-sown safflower had more L. pratensis than mid-sown or late-sown safflower, and was more conducive to the settlement and reproduction of L. pratensis. The density of L. pratensis on safflower trap crops in three sowing patterns was significantly higher than on adjacent cotton. The pattern of intercropping safflower trap crops was more effective at reducing densities of L. pratensis on cotton than placing safflower as 'spot' trap crops or peripheral trap crops. However, this result also may be related to the overall area of the safflower trap crops. With regular chemical control of L. pratensis on safflower trap crops, the number of cotton bolls was increased by 10.04%, whereas the rate of boll damage was reduced by 33.44%, compared to cotton without safflower trap crops and insecticide sprays. CONCLUSION: Safflower shows promise as an effective trap crop for L. pratensis, and may contribute to controlling L. pratensis in cotton. © 2020 Society of Chemical Industry.


Asunto(s)
Carthamus tinctorius , Heterópteros , Animales , China , Productos Agrícolas , Gossypium , Ninfa
2.
Artículo en Inglés | MEDLINE | ID: mdl-32528942

RESUMEN

Eggplant (brinjal) is a popular vegetable that provides an important source of income for small, resource-poor Bangladeshi farmers. The biggest constraint to brinjal production is the eggplant fruit and shoot borer (EFSB). This study was conducted in 2019 in five districts in Bangladesh and examined the impacts of using genetically engineered, insect-resistant brinjal (Bt brinjal) on its value and marketing. Based on a survey of Bt and non-Bt farmers, results indicate that Bt brinjal provided an average of 19.6% higher yield and 21.7% higher revenue compared to non-Bt varieties. On a per tonne basis, the revenue benefit of using Bt brinjal was 1.7%, reflecting different levels of acceptability among trade buyers and consumers. Some were prepared to pay higher prices for Bt brinjal compared to non-Bt brinjal because the fruit was less damaged, while others paid a price discount because the Bt brinjal was not available in preferred local varieties. Labor use, expressed in 8-h days, for harvesting, grading, and packaging of Bt brinjal was 14% higher for Bt brinjal, reflecting the increased yields of Bt brinjal. 83.1% of Bt brinjal growers were satisfied with the yields obtained, and 80.6% were satisfied with the quality of fruit. This contrasts with non-Bt brinjal growers where 58.7% were satisfied with their yields and 28% indicated that a large portion of their fruit was infested, not a concern for Bt brinjal. Three-quarters of Bt brinjal growers planned to plant Bt brinjal next season because of the apparent benefits achieved of higher yields, revenue and fruit quality. Many also highlighted the benefits of reduced insecticides. Of the non-Bt growers, 39.6% had not heard of Bt brinjal. However, after hearing more about the impact of the technology, 71.4% of them indicated they planned to grow Bt brinjal next season. These findings suggest there are significant benefits of Bt brinjal and highlight the importance of making the technology available in more varieties that are suitable to local conditions and consumer preferences. Additional studies are warranted to corroborate these findings and explore in more detail the factors influencing decisions made by farmers and consumers regarding Bt brinjal.

3.
Insect Biochem Mol Biol ; 115: 103247, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31626952

RESUMEN

The diamondback moth, Plutella xylostella, is a damaging pest of cruciferous crops, and has evolved resistance to many of the insecticides used for control, including members of the diamide class. Previous work on the molecular basis of resistance to diamides has documented mutations in the target-site, the ryanodine receptor, in resistant populations of P. xylostella worldwide. In contrast the role of metabolic resistance to this insecticide class is significantly less clear. Here we show that overexpression of a flavin-dependent monooxgenase (FMO) confers resistance to the diamide chlorantraniliprole in P. xylostella. Transcriptome profiling of diamide resistant strains, with and without target-site resistance, revealed constitutive over-expression of several transcripts encoding detoxification enzymes compared to susceptible strains. Two of these, CYP6BG1, and PxFMO2 were particularly highly overexpressed (33,000 and 14,700-fold, respectively) in a resistant strain (HAW) lacking target-site resistance. After 17 generations without diamide selection the resistance of the HAW strain fell by 52-fold and the expression of PxFMO2 by > 1300-fold, however, the expression of CYP6BG1 declined by only 3-fold. Generation of transgenic Drosophila melanogaster expressing these genes demonstrated that PxFMO2, but not CYP6BG1, confers resistance in vivo. Overexpression of PxFMO2 in the HAW strain is associated with mutations, including a putative transposable element insertion, in the promoter of this gene. These enhance the expression of a reporter gene when expressed in a lepidopteran cell line suggesting they are, at least in part, responsible for the overexpression of PxFMO2 in the resistant strain. Our results provide new evidence that insect FMOs can be recruited to provide resistance to synthetic insecticides.


Asunto(s)
Familia 6 del Citocromo P450/metabolismo , Insecticidas , Mariposas Nocturnas/enzimología , Oxigenasas/metabolismo , ortoaminobenzoatos , Animales , Femenino , Perfilación de la Expresión Génica , Inactivación Metabólica , Resistencia a los Insecticidas , Masculino
4.
Sci Rep ; 9(1): 10621, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337839

RESUMEN

Specialist insect herbivores are constrained by highly specific odor recognition systems to accept suitable host plants. Given that odor recognition leads specialist insects to accept a limited range of plants, we hypothesized that phylogenetically distant plants produce odors that are physicochemically different from host odors and would be less attractive or even repellent to a specialist herbivore. We tested this hypothesis by examining behavioral and ovipositional responses of swede midge (Contarinia nasturtii, Diptera: Cecidomyiidae), a specialist of brassicas, to broccoli sprayed with non-host essential oils. Specifically, we asked: (1) How do essential oils from different plant species influence host-seeking and oviposition behaviors of swede midge? (2) Do odors from non-host plants that are not phylogenetically related or physicochemically similar to host plants affect host-seeking or ovipositional behavior of swede midge? In oviposition assays, we found that non-host odors varied in their ability to modify female midge behavior and that phylogenetic relatedness was negatively correlated with larval density. In y-tube assays, we found that female midges most frequently avoided non-host odors that were more similar to brassica odors. Females were less likely to oviposit on or choose any treated host plants, but particularly avoided garlic, spearmint, thyme, eucalyptus lemon, and cinnamon bark treatments. Overall, we found that plant phylogenetic relatedness and odor similarity are related to repellency. Therefore, altering the diversity of plant odors by explicitly accounting for plant phylogenetic distance and odor similarity, relative to host plants, may be an important, underexploited tactic for sustainably managing challenging pests.


Asunto(s)
Brassica/metabolismo , Dípteros , Herbivoria , Animales , Odorantes , Oviposición , Filogenia , Aceites de Plantas , Plantas/metabolismo
5.
Insects ; 10(7)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284420

RESUMEN

Eggplant (Solanum melongena Linn.), or brinjal, was engineered to express an insecticidal protein (Cry1Ac) from Bacillus thuringiensis (Bt) and commercialized in Bangladesh on a limited basis in 2014. As part of an insect resistance management strategy, studies were conducted to determine the susceptibility of the targeted insect pest, the eggplant fruit and shoot borer, Leucinodes orbonalis (Guenée), to Cry1Ac using a diet-incorporation bioassay method. Eighteen populations of L. orbonalis were collected from the main brinjal growing areas in 17 districts of Bangladesh during 2018-2019 and assayed. Larvae from each population were reared to adults and allowed to mate. Eggs from the matings were allowed to hatch, and neonates were used for bioassays. Bioassays were performed with different concentrations of Cry1Ac and an untreated control. Median lethal concentrations (LC50) ranged between 0.035 and 0.358 ppm and molt inhibitory concentration (MIC50) values ranged from 0.008 to 0.181 ppm. Variation in susceptibility among field populations was 10.22-fold for LC50 and 22.63-fold for MIC50. These results were compared to values from 73 populations in India. Overall, the results showed similar natural variation and suggest that these Bangladeshi values can be used as benchmarks for resistance monitoring as Bt brinjal becomes more widely adopted in Bangladesh.

6.
J Econ Entomol ; 112(5): 2142-2148, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31219581

RESUMEN

Most adult parasitoids depend on carbohydrate-rich food as an energy source for longevity, fecundity, and mobility. Thus, providing sugars has been proposed as a technique to maximize the biological control efficacy of parasitoids. However, the sugars provided for parasitoids need to be carefully selected because herbivore hosts might also benefit. Here we explore the effects of 12 naturally occurring sugars on the longevity and fecundity of the rice pest, Chilo suppressalis, and the longevity of its parasitoid, Cotesia chilonis, as well as the effect of sugars on sugar consumption of C. chilonis. Results showed that none of the tested sugars significantly impacted the longevity of C. suppressalis, but fructose, glucose, maltose, and sucrose significantly increased its fecundity. The longevity of C. chilonis was significantly increased when fed fructose, glucose, sucrose, maltose, trehalose, and melezitose. Our data suggest that C. chilonis consumed larger quantities of glucose, fructose, and sucrose followed by maltose, melezitose, and trehalose and the longevity of C. chilonis was positively correlated to sugar consumption. Our data also suggest that the herbivore C. suppressalis and its parasitoid C. chilonis responded differently to trehalose and melezitose. Although additional studies are needed, our data suggest that these sugars could be considered as candidate components for sugar sprays to enhance the activity and efficacy of C. chilonis, but without benefiting its pest host.


Asunto(s)
Himenópteros , Lepidópteros , Mariposas Nocturnas , Avispas , Animales , Carbohidratos , Larva , Longevidad , Azúcares
7.
Artículo en Inglés | MEDLINE | ID: mdl-31182544

RESUMEN

Eggplant, or brinjal (Solanum melongena), is a popularly consumed vegetable grown throughout Asia that is prone to vicious and sustained attack by the eggplant fruit and shoot borer (EFSB) (Leucinodes orbonalis) throughout the growing season. Yield losses in Bangladesh because of EFSB infestation have been reported as high as 86%. Farmers reduce crop losses by frequent applications of insecticide. To counter the EFSB pest, Bangladesh has developed and released four Bt brinjal varieties expressing Cry1Ac (Bt brinjal). Bangladesh is the first developing country to release a commercial genetically engineered (GE) food crop. In this article, we discuss the development and adoption of Bt brinjal in Bangladesh from initial distribution to 20 farmers in 2014 to cultivation by more than 27,000 farmers in 2018. Bt brinjal provides essentially complete control of EFSB, dramatically reduces insecticide sprays, provides a sixfold increase in grower profit, and does not affect nontarget arthropod biodiversity. A major focus is to ensure its durability through stewardship. Bangladesh has shown great leadership in adopting biotechnology for the benefit of its farmers and serves as an example for other countries.


Asunto(s)
Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Productos Agrícolas , Países en Desarrollo , Plantas Modificadas Genéticamente , Solanum melongena , Bangladesh
8.
J Econ Entomol ; 112(4): 1546-1551, 2019 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30915478

RESUMEN

The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a global pest that infests vegetable and field crops within the Brassica family. A genetically engineered strain of P. xylostella, OX4319L, carrying a 'self-limiting' gene, has shown potential for managing P. xylostella populations, using sustained releases of OX4319L male moths. In order for such a strain to provide control, the transgenic individuals must exhibit attraction to female P. xylostella sex pheromone and adequate dispersal in the field. In this study, we tested these key traits. First, we compared the responses of the OX4319L male moths to a synthetic female sex pheromone source in wind tunnel trials to those of males from three other strains. We found that OX4319L males responded comparably to strains of non-engineered males, with all males flying upwind towards the pheromone source. Second, we used mark-release-recapture studies of a wildtype P. xylostella strain, from which the OX4319L strain was originally developed, to assess dispersal under field conditions. Released males were recaptured using both pheromone-baited and passive traps within a 2.83 ha circular cabbage field, with a recapture rate of 7.93%. Males were recaptured up to the boundary of the field at 95 m from the central release point. The median dispersal of males was 14 m. These results showed the progenitor strain of OX4319L retained its ability to disperse within a host field. The results of these experiments are discussed in relation to the potential for the effective use of engineered male-selecting P. xylostella strains under field conditions.


Asunto(s)
Brassica , Mariposas Nocturnas , Atractivos Sexuales , Animales , Animales Modificados Genéticamente , Femenino , Masculino , Feromonas
9.
Artículo en Inglés | MEDLINE | ID: mdl-30842944

RESUMEN

As the global population continues to expand, utilizing an integrated approach to pest management will be critically important for food security, agricultural sustainability, and environmental protection. Genetically engineered (GE) crops that provide protection against insects and diseases, or tolerance to herbicides are important tools that complement a diversified integrated pest management (IPM) plan. However, despite the advantages that GE crops may bring for simplifying the approach and improving efficiency of pest and weed control, there are also challenges for successful implementation and sustainable use. This paper considers how several GE traits, including those that confer protection against insects by expression of proteins from Bacillus thuringiensis (Bt), traits that confer tolerance to herbicides, and RNAi-based traits that confer resistance to viral pathogens, can be key elements of a diversified IPM plan for several different crops in both developed and developing countries. Additionally, we highlight the importance of community engagement and extension, strong partnership between industry, regulators and farmers, and education and training programs, for achieving long-term success. By leveraging the experiences gained with these GE crops, understanding the limitations of the technology, and considering the successes and failures of GE traits in IPM plans for different crops and regions, we can improve the sustainability and versatility of IPM plans that incorporate these and future technologies.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32083066

RESUMEN

Alternative, biologically-based approaches for pest management are sorely needed and one approach is to use genetically engineered insects. Herein we describe a series of integrated field, laboratory and modeling studies with the diamondback moth, Plutella xylostella, a serious global pest of crucifers. A "self-limiting" strain of Plutella xylostella (OX4319L), genetically engineered to allow the production of male-only cohorts of moths for field releases, was developed as a novel approach to protect crucifer crops. Wild-type females that mate with these self-limiting males will not produce viable female progeny. Our previous greenhouse studies demonstrated that releases of OX4319L males lead to suppression of the target pest population and dilution of insecticide-resistance genes. We report results of the first open-field release of a non-irradiated, genetically engineered self-limiting strain of an agricultural pest insect. In a series of mark-release-recapture field studies with co-releases of adult OX4319L males and wild-type counterparts, the dispersal, persistence and field survival of each strain were measured in a 2.83 ha cabbage field. In most cases, no differences were detected in these parameters. Overall, 97.8% of the wild-type males and 95.4% of the OX4319L males recaptured dispersed <35 m from the release point. The predicted persistence did not differ between strains regardless of release rate. With 95% confidence, 75% of OX4319L males released at a rate of 1,500 could be expected to live between 3.5 and 5.4 days and 95% of these males could be expected to be detected within 25.8-34.9 m from the release point. Moth strain had no effect on field survival but release rate did. Collectively, these results suggest similar field behavior of OX4319L males compared to its wild-type counterpart. Laboratory studies revealed no differences in mating competitiveness or intrinsic growth rates between the strains and small differences in longevity. Using results from these studies, mathematical models were developed that indicate release of OX4319L males should offer efficacious pest management of P. xylostella. Further field studies are recommended to demonstrate the potential for this self-limiting P. xylostella to provide pest suppression and resistance management benefits, as was previously demonstrated in greenhouse studies.

11.
PLoS One ; 13(11): e0205713, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30462653

RESUMEN

Eggplant or brinjal (Solanum melongena) is a popular vegetable grown throughout Asia where it is attacked by brinjal fruit and shoot borer (BFSB) (Leucinodes orbonalis). Yield losses in Bangladesh have been reported up to 86% and farmers rely primarily on frequent insecticide applications to reduce injury. Bangladesh has developed and released four brinjal varieties producing Cry1Ac (Bt brinjal) and is the first country to do so. We report on the first replicated field trials comparing four Bt brinjal varieties to their non-Bt isolines, with and without standard insecticide spray regimes. Results of the two-year study (2016-17) indicated Bt varieties had increased fruit production and minimal BFSB fruit infestation compared with their respective non-Bt isolines. Fruit infestation for Bt varieties varied from 0-2.27% in 2016, 0% in 2017, and was not significantly affected by the spray regime in either year. In contrast, fruit infestation in non-Bt lines reached 36.70% in 2016 and 45.51% in 2017, even with weekly spraying. An economic analysis revealed that all Bt lines had higher gross returns than their non-Bt isolines. The non-sprayed non-Bt isolines resulted in negative returns in most cases. Maximum fruit yield was obtained from sprayed plots compared to non-sprayed plots, indicating that other insects such as whiteflies, thrips and mites can reduce plant vigor and subsequent fruit weight. Statistically similar densities of non-target arthropods, including beneficial arthropods, were generally observed in both Bt and non-Bt varieties. An additional trial that focused on a single Bt variety and its isoline provided similar results on infestation levels, with and without sprays, and similarly demonstrated higher gross returns and no significant effects on non-target arthropods. Together, these studies indicate that the four Bt brinjal lines are extremely effective at controlling BFSB in Bangladesh without affecting other arthropods, and provide greater economic returns than their non-Bt isolines.


Asunto(s)
Bacillus thuringiensis/fisiología , Frutas/economía , Frutas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Solanum melongena/microbiología , Solanum melongena/parasitología , Animales , Bacillus thuringiensis/efectos de los fármacos , Bangladesh , Frutas/efectos de los fármacos , Insecticidas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Plantas Modificadas Genéticamente , Solanum melongena/efectos de los fármacos , Solanum melongena/genética
12.
J Insect Sci ; 18(3)2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29924332

RESUMEN

Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.


Asunto(s)
Brassica/economía , Herbivoria , Nematocera/fisiología , Animales , Brassica/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Nematocera/crecimiento & desarrollo , Densidad de Población , Factores de Tiempo
13.
Sci Rep ; 8(1): 307, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321488

RESUMEN

Cabbage looper, Trichoplusia ni (Hübner) is an important lepidopteran pest on many vegetable and greenhouse crops, and some field crops. Although there are no commercial transgenic Bt vegetable or greenhouse crops, T. ni is a target of Bollgard II cotton, which produces Cry1Ac and Cry2Ab. We expand on previous work that examined the effect of Bt crops on parasitoids using Bt-resistant lepidopteran populations as hosts. Cry1Ac/Cry2Ab-resistant T. ni larvae were used to eliminate host quality effects and to evaluate the direct effects of Bt cotton on the parasitoids Copidosoma floridanum (Ashmead) and Cotesia marginiventris (Cresson). These tri-trophic studies confirm that Bt cotton had no significant impact on development, success of parasitism, survival and adult longevity of C. marginiventris when using Bt-resistant T. ni fed on Bt cotton. Similarly, this Bt cotton had no significant impact on the development, mummy weight and the number of progeny produced by C. floridanum. Our studies verified that lyophilized Bt crop tissue maintained its insecticidal bioactivity when incorporated into an artificial diet, demonstrating that hosts and parasitoids were exposed to active Cry proteins. The egg-larval parasitoid C. floridanum, or similar species that consume their entire host, should be considered useful surrogates in risk assessment of Bt crops to non-target arthropods.


Asunto(s)
Proteínas Bacterianas/genética , Endotoxinas/genética , Gossypium/parasitología , Proteínas Hemolisinas/genética , Himenópteros/patogenicidad , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Resistencia a la Enfermedad , Endotoxinas/metabolismo , Gossypium/genética , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Parásitos , Transgenes
14.
PLoS One ; 11(10): e0165190, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27798662

RESUMEN

Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO's, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides.


Asunto(s)
Artrópodos/fisiología , Bacillus thuringiensis/metabolismo , Solanum melongena/fisiología , Solanum melongena/parasitología , Animales , Filipinas , Suelo , Especificidad de la Especie
15.
Nat Biotechnol ; 34(7): 693, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27404872
16.
J Econ Entomol ; 109(4): 1667-76, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27329622

RESUMEN

The corn earworm, Helicoverpa zea (Boddie), is a polyphagous pest found throughout the United States, where it attacks many field and vegetable crops. Although H. zea has long been a traditional pest of sweet corn, its importance to this crop has increased dramatically over the past two decades. In this review, we summarize information critical for current and future management of H. zea in sweet corn production in the United States. First, we discuss the pest status of H. zea and its life history, including migration, infestation and larval development, diapause, overwintering, and abiotic factors that affect its biology. Next we describe monitoring methods, crop protection decision-making processes, chemical control options, and the use of genetic technologies for control of H. zea Alternative H. zea management options including biological control, cultural controls, host plant resistance, and pheromone disruption are also reviewed. The role of climate change and its effects on H. zea and its ecology are discussed, as well as the recent invasion of its relative, Helicoverpa armigera (Hübner), which is a major pest of corn in other parts of the world. To conclude, we suggest future research opportunities for H. zea and H. armigera management in sweet corn.


Asunto(s)
Control de Insectos , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Zea mays , Animales , Cambio Climático , Control de Insectos/métodos , Mariposas Nocturnas/crecimiento & desarrollo , Estados Unidos , Zea mays/crecimiento & desarrollo
17.
PLoS One ; 11(6): e0157498, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322533

RESUMEN

Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena) is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB). Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP) lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010-2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75-24.7 ppm dry weight with the highest in the terminal leaves (or shoots) and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6-100%) and fruit damage (98.1-99.7%) and reduced EFSB larval infestation (95.8-99.3%) under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides.


Asunto(s)
Proteínas Bacterianas/genética , Endotoxinas/genética , Frutas/genética , Proteínas Hemolisinas/genética , Control Biológico de Vectores , Solanum melongena/genética , Animales , Asia , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/biosíntesis , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Endotoxinas/biosíntesis , Frutas/crecimiento & desarrollo , Frutas/microbiología , Frutas/parasitología , Regulación de la Expresión Génica de las Plantas , Proteínas Hemolisinas/biosíntesis , Larva/patogenicidad , Mariposas Nocturnas/patogenicidad , Filipinas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , Solanum melongena/crecimiento & desarrollo , Solanum melongena/microbiología , Solanum melongena/parasitología
18.
J Agric Food Chem ; 64(2): 394-402, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26751159

RESUMEN

Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.


Asunto(s)
Productos Agrícolas/normas , Alimentos Modificados Genéticamente/normas , Plantas Modificadas Genéticamente/química , Sector Público , Productos Agrícolas/química , Productos Agrícolas/genética , Inocuidad de los Alimentos , Humanos , Plantas Modificadas Genéticamente/genética , Sector Público/legislación & jurisprudencia
19.
J Econ Entomol ; 109(2): 613-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26685110

RESUMEN

The leek moth, Acrolepiopsis assectella (Zeller), was first discovered in Ottawa, Canada, during the 1993 growing season, representing the first known occurrence of this species in North America. Since then, it has become a significant concern in Allium vegetable production including garlic, leeks, and onions. Acrolepiopsis assectella was first detected in the contiguous United States during the 2009 growing season in northern New York. In this study, we evaluated the development of the US A. assectella population in the laboratory and commercial onion fields. Our results showed that this population required 443.9 degree-days to complete its life cycle on onions in the laboratory. The development of A. assectella on onion did not significantly differ from populations reared on garlic or leeks. Field studies revealed three distinct flight periods for overwintered, first- and second-generation adult males in northern New York. Life cycle duration in the field ranged from 4 to 8 wk. The degree-day prediction model evaluated in this study provided accurate estimates of the occurrence of the following generation. We conclude that this model can help growers to implement appropriate management strategies for different life stages in a timely manner and lessen damage by this new invasive pest.


Asunto(s)
Modelos Biológicos , Mariposas Nocturnas/crecimiento & desarrollo , Temperatura , Animales , Femenino , Vuelo Animal , Especificidad del Huésped , Masculino , Cebollas , Estaciones del Año
20.
Transgenic Res ; 25(1): 33-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26545599

RESUMEN

Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.


Asunto(s)
Gossypium/genética , Plantas Modificadas Genéticamente/fisiología , Tetranychidae/fisiología , Zea mays/genética , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Productos Agrícolas , Endotoxinas/genética , Fertilidad , Gossypium/fisiología , Proteínas Hemolisinas/genética , Herbivoria/fisiología , Proteínas de Insectos , Larva , Control Biológico de Vectores , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Conducta Predatoria/fisiología , Receptores de Superficie Celular/genética , Medición de Riesgo/métodos , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...