Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
3.
Artículo en Inglés | MEDLINE | ID: mdl-38007547

RESUMEN

Maternal immune activation (MIA) puts offspring at greater risk for neurodevelopmental disorders associated with impaired social behavior. While it is known that immune signaling through maternal, placental, and fetal compartments contributes to these phenotypical changes, it is unknown to what extent the stress response to illness is involved and how it can be harnessed for potential interventions. To this end, on gestational day 15, pregnant rat dams were administered the bacterial mimetic lipopolysaccharide (LPS; to induce MIA) alongside metyrapone, a clinically available 11ß-hydroxylase (11ßHSD) inhibitor used to treat hypercortisolism in pregnant, lactating, and neonatal populations. Maternal, placental, and fetal brain levels of corticosterone and placental 11ßHSD enzymes type 1 and 2 were measured 3-hrs post treatment. Offspring social behaviors were evaluated across critical phases of development. MIA was associated with increased maternal, placental, and fetal brain corticosterone concentrations that were diminished with metyrapone exposure. Metyrapone protected against reductions in placental 11ßHSD2 in males only, suggesting that less corticosterone was inactivated in female placentas. Behaviorally, metyrapone-exposure attenuated MIA-induced social disruptions in juvenile, adolescent, and adult males, while females were unaffected or performed worse. Metyrapone-exposure reversed MIA-induced transcriptional changes in monoamine-, glutamate-, and GABA-related genes in adult male ventral hippocampus, but not in females. Taken together, these findings illustrate that MIA-induced HPA responses act alongside the immune system to produce behavioral deficits. As a clinically available drug, the sex-specific benefits and constraints of metyrapone should be investigated further as a potential means of reducing neurodevelopmental risks due to gestational MIA.

4.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37674018

RESUMEN

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Humanos , Núcleo Accumbens/metabolismo , Corteza Prefontal Dorsolateral , Proteoma/metabolismo , Ritmo Circadiano , Trastornos Relacionados con Opioides/metabolismo , Corteza Prefrontal/metabolismo
5.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37066169

RESUMEN

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.

6.
Genes Brain Behav ; 21(7): e12829, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36053258

RESUMEN

Opioids like fentanyl remain the mainstay treatment for chronic pain. Unfortunately, opioid's high dependence liability has led to the current opioid crisis, in part, because of side-effects that develop during long-term use, including analgesic tolerance and physical dependence. Both tolerance and dependence to opioids may lead to escalation of required doses to achieve previous therapeutic efficacy. Additionally, altered sleep and circadian rhythms are common in people on opioid therapy. Opioids impact sleep and circadian rhythms, while disruptions to sleep and circadian rhythms likely mediate the effects of opioids. However, the mechanisms underlying these bidirectional relationships between circadian rhythms and opioids remain largely unknown. The circadian protein, neuronal PAS domain protein 2 (NPAS2), regulates circadian-dependent gene transcription in structure of the central nervous system that modulate opioids and pain. Here, male and female wild-type and NPAS2-deficient (NPAS2-/-) mice were used to investigate the role of NPAS2 in fentanyl analgesia, tolerance, hyperalgesia and physical dependence. Overall, thermal pain thresholds, acute analgesia and tolerance to a fixed dose of fentanyl were largely similar between wild-type and NPAS2-/- mice. However, female NPAS2-/- exhibited augmented analgesic tolerance and significantly more behavioral symptoms of physical dependence to fentanyl. Only male NPAS2-/- mice had increased fentanyl-induced hypersensitivity, when compared with wild-type males. Together, our findings suggest sex-specific effects of NPAS2 signaling in the regulation of fentanyl-induced tolerance, hyperalgesia and dependence.


Asunto(s)
Analgesia , Analgésicos Opioides , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tolerancia a Medicamentos/genética , Femenino , Fentanilo , Humanos , Hiperalgesia , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Dolor/tratamiento farmacológico , Factores de Transcripción
7.
Psychopharmacology (Berl) ; 239(10): 3185-3200, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35915264

RESUMEN

RATIONALE: Synthetic opioids like fentanyl are contributing to the rise in rates of opioid use disorder and drug overdose deaths. Sleep dysfunction and circadian rhythm disruption may worsen during opioid withdrawal and persist during abstinence. Severe and persistent sleep and circadian alterations are putative factors in opioid craving and relapse. However, very little is known about the impact of fentanyl on sleep architecture and sleep-wake cycles, particularly opioid withdrawal. Further, circadian rhythms regulate sleep-wake cycles, and the circadian transcription factor, neuronal PAS domain 2 (NPAS2) is involved in the modulation of sleep architecture and drug reward. Here, we investigate the role of NPAS2 in fentanyl-induced sleep alterations. OBJECTIVES: To determine the effect of fentanyl administration and withdrawal on sleep architecture, and the role of NPAS2 as a factor in fentanyl-induced sleep changes. METHODS: Electroencephalography (EEG) and electromyography (EMG) was used to measure non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) at baseline and following acute and chronic fentanyl administration in wild-type and NPAS2-deficient male mice. RESULTS: Acute and chronic administration of fentanyl led to increased wake and arousal in both wild-type and NPAS2-deficient mice, an effect that was more pronounced in NPAS2-deficient mice. Chronic fentanyl administration led to decreased NREMS, which persisted during withdrawal, progressively decreasing from day 1 to 4 of withdrawal. The impact of fentanyl on NREMS and arousal was more pronounced in NPAS2-deficient mice. CONCLUSIONS: Chronic fentanyl disrupts NREMS, leading to a progressive loss of NREMS during subsequent days of withdrawal. Loss of NPAS2 exacerbates the impact of fentanyl on sleep and wake, revealing a potential role for the circadian transcription factor in opioid-induced sleep changes.


Asunto(s)
Fentanilo , Factores de Transcripción , Analgésicos Opioides/farmacología , Animales , Nivel de Alerta , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano , Electroencefalografía , Movimientos Oculares , Fentanilo/farmacología , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Sueño , Vigilia
8.
Transl Psychiatry ; 12(1): 123, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347109

RESUMEN

Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides , Encéfalo , Humanos , Trastornos Relacionados con Opioides/genética , Corteza Prefrontal
9.
Biol Psychiatry ; 90(8): 550-562, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380600

RESUMEN

BACKGROUND: Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA sequencing was conducted on the dorsolateral prefrontal cortex and nucleus accumbens, regions heavily implicated in OUD, from postmortem brains in subjects with OUD. METHODS: We performed RNA sequencing on the dorsolateral prefrontal cortex and nucleus accumbens from unaffected comparison subjects (n = 20) and subjects diagnosed with OUD (n = 20). Our transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap. Weighted gene coexpression analyses identified OUD-specific modules and gene networks. Integrative analyses between differentially expressed transcripts and genome-wide association study datasets using linkage disequilibrium scores assessed the genetic liability of psychiatric-related phenotypes in OUD. RESULTS: Rank-rank hypergeometric overlap analyses revealed extensive overlap in transcripts between the dorsolateral prefrontal cortex and nucleus accumbens in OUD, related to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control proinflammatory cytokine, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a potential driver for opioid-induced neuroplasticity. Linkage disequilibrium score analysis suggested genetic liabilities for risky behavior, attention-deficit/hyperactivity disorder, and depression in subjects with OUD. CONCLUSIONS: Overall, our findings suggest connections between the brain's immune system and opioid dependence in the human brain.


Asunto(s)
Núcleo Accumbens , Trastornos Relacionados con Opioides , Analgésicos Opioides/uso terapéutico , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Relacionados con Opioides/genética , Corteza Prefrontal
10.
Transl Psychiatry ; 10(1): 59, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32066699

RESUMEN

Women are approximately two times as likely to be diagnosed with major depressive disorder (MDD) compared to men. While sex differences in MDD might be driven by circulating gonadal hormones, we hypothesized that developmental hormone exposure and/or genetic sex might play a role. Mice were gonadectomized in adulthood to isolate the role of developmental hormones. We examined the effects of developmental gonadal and genetic sex on anhedonia-/depressive-like behaviors under non-stress and chronic stress conditions and performed RNA-sequencing in three mood-relevant brain regions. We used an integrative network approach to identify transcriptional modules and stress-specific hub genes regulating stress susceptibility, with a focus on whether these differed by sex. After identifying sex differences in anhedonia-/depressive-like behaviors (female > male), we show that both developmental hormone exposure (gonadal female > gonadal male) and genetic sex (XX > XY) contribute to the sex difference. The top biological pathways represented by differentially expressed genes were related to immune function; we identify which differentially expressed genes are driven by developmental gonadal or genetic sex. There was very little overlap in genes affected by chronic stress in males and females. We also identified highly co-expressed gene modules affected by stress, some of which were affected in opposite directions in males and females. Since all mice had equivalent hormone exposure in adulthood, these results suggest that sex differences in gonadal hormone exposure during sensitive developmental periods program adult sex differences in mood, and that these sex differences are independent of adult circulating gonadal hormones.


Asunto(s)
Trastorno Depresivo Mayor , Caracteres Sexuales , Afecto , Anhedonia , Animales , Trastorno Depresivo Mayor/genética , Femenino , Hormonas Gonadales , Masculino , Ratones
11.
J Neurosci ; 39(24): 4657-4667, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30962277

RESUMEN

The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Trastornos Relacionados con Cocaína/genética , Cocaína/farmacología , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Núcleo Accumbens/citología , Sinapsis , Animales , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa , Transmisión Sináptica/efectos de los fármacos
12.
Neuropsychopharmacology ; 44(6): 1055-1061, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30795003

RESUMEN

Previously, we demonstrated that dendritic spine density (DSD) in deep layer 3 of the primary auditory cortex (A1) is lower, due to having fewer small spines, in subjects with schizophrenia (SZ) than non-psychiatric control (NPC) subjects. We also previously demonstrated that microtubule-associated-protein-2 immunoreactivity (MAP2-IR) in A1 deep layer 3 is lower, and positively correlated with DSD, in SZ subjects. Here, we first sought to confirm these findings in an independent cohort of 25 SZ-NPC subject pairs (cohort 1). We used immunohistochemistry and confocal microscopy to measure DSD and MAP2-IR in A1 deep layer 3. Consistent with previous studies, both DSD and MAP2-IR were lower in SZ subjects. We then tested the hypothesis that MAP2-IR mediates the effect of SZ on DSD in a cohort of 45 SZ-NPC subject pairs (combined cohort) that included all subjects from cohort 1 and two previously studied cohorts. Based on the distribution of MAP2-IR values in NPC subjects, we categorized each SZ subject as having either low MAP2-IR (SZ MAP2-IR(low)) or normal MAP2-IR (SZ MAP2-IR(normal)). Among SZ MAP-IR(low) subjects, mean DSD was significantly lower than in NPC subjects. However, mean DSD did not differ between SZ MAP2-IR(normal) and NPC subjects. Moreover, MAP2-IR statistically mediated small spine differences, with lower MAP2-IR values associated with fewer small spines. Our findings confirm that low density of small spines and low MAP2-IR are robust SZ phenotypes and suggest that MAP2-IR mediates the effect of SZ on DSD.


Asunto(s)
Corteza Auditiva/patología , Espinas Dendríticas/patología , Proteínas Asociadas a Microtúbulos , Trastornos Psicóticos/patología , Células Piramidales/patología , Esquizofrenia/patología , Adulto , Corteza Auditiva/citología , Corteza Auditiva/diagnóstico por imagen , Autopsia , Estudios de Casos y Controles , Recuento de Células , Estudios de Cohortes , Espinas Dendríticas/ultraestructura , Femenino , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Persona de Mediana Edad , Trastornos Psicóticos/diagnóstico por imagen , Células Piramidales/ultraestructura , Esquizofrenia/diagnóstico por imagen
13.
Mol Psychiatry ; 24(11): 1668-1684, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29728703

RESUMEN

The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.


Asunto(s)
Ritmo Circadiano/fisiología , Sirtuina 1/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Cocaína/metabolismo , Condicionamiento Operante/fisiología , Condicionamiento Psicológico/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , NAD/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Oxidación-Reducción , Recompensa , Sirtuina 1/fisiología , Tirosina 3-Monooxigenasa/fisiología , Área Tegmental Ventral/metabolismo
14.
Biol Psychiatry ; 78(6): 374-85, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25818630

RESUMEN

BACKGROUND: Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), numerous studies have revealed that the typically robust immunoreactivity (IR) of MAP2 is significantly reduced across several cortical regions. The relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in Sz, has not been explored in previous studies, and MAP2-IR loss has not been investigated in the primary auditory cortex (Brodmann area 41), a site of conserved pathology in Sz. METHODS: Using quantitative spinning disk confocal microscopy in two cohorts of subjects with Sz and matched control subjects (Sz subjects, n = 20; control subjects, n = 20), we measured MAP2-IR and dendritic spine density and spine number in deep layer 3 of BA41. RESULTS: Subjects with Sz exhibited a significant reduction in MAP2-IR. The reductions in MAP2-IR were not associated with neuron loss, loss of MAP2 protein, clinical confounders, or technical factors. Dendritic spine density and number also were reduced in Sz and correlated with MAP2-IR. In 12 (60%) subjects with Sz, MAP2-IR values were lower than the lowest values in control subjects; only in this group were spine density and number significantly reduced. CONCLUSIONS: These findings demonstrate that MAP2-IR loss is closely linked to dendritic spine pathology in Sz. Because MAP2 shares substantial sequence, regulatory, and functional homology with MAP tau, the wealth of knowledge regarding tau biology and the rapidly expanding field of tau therapeutics provide resources for identifying how MAP2 is altered in Sz and possible leads to novel therapeutics.


Asunto(s)
Corteza Auditiva/metabolismo , Espinas Dendríticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Esquizofrenia/metabolismo , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Persona de Mediana Edad , Adulto Joven
15.
Neurosci Lett ; 601: 46-53, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25478958

RESUMEN

Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.


Asunto(s)
Espinas Dendríticas/patología , Esquizofrenia/patología , Factores de Edad , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/ultraestructura , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...