Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 10: 1258522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841474

RESUMEN

Spirorchiid blood flukes are widespread in sea turtles, causing disease and mortality in their populations, with high prevalence in several ocean basins. Besides being leading parasitic causes of sea turtle strandings in several parts of the world, these infectious agents can cause endocarditis, vasculitis, thrombosis, miliary egg granulomas, and aneurysms, which ultimately may compromise the survival of green sea turtles. More severe cases may also result in multifocal granulomatous meningitis or pneumonia, both of which can be fatal. Herein, we report the first case of severe trematode infection, Caused by Learedius learedi, in a green sea turtle in the northern Red Sea; this infection is associated with bilateral blindness. Necropsy revealed multiple granulomas with intralesional trematode eggs in the optic nerve, eyes, spleen, heart, and lungs. The parasite was identified as Learedius learedi through specific primers of the ribosomal genome and COI sequences obtained from GenBank. Altogether, these findings emphasize the importance of recognizing the systemic nature of this particular fluke infection to ultimately protect the lives of these marine animals and ensure the sustainability of these species in the wild.

2.
Plants (Basel) ; 10(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34961274

RESUMEN

Chemical thinning of apple fruitlets is an important practice as it reduces the natural fruit load and, therefore, increases the size of the final fruit for commercial markets. In apples, one chemical thinner used is Metamitron, which is sold as the commercial product Brevis® (Adama, Ashdod, Israel). This thinner inhibits the electron transfer between Photosystem II and Quinone-b within light reactions of photosynthesis. In this study, we investigated the responses of two apple cultivars-Golden Delicious and Top Red-and photosynthetic light reactions after administration of Brevis®. The analysis revealed that the presence of the inhibitor affects both cultivars' energetic status. The kinetics of the photoprotective mechanism's sub-processes are attenuated in both cultivars, but this seems more severe in the Top Red cultivar. State transitions of the antenna and Photosystem II repair cycle are decreased substantially when the Metamitron concentration is above 0.6% in the Top Red cultivar but not in the Golden Delicious cultivar. These attenuations result from a biased absorbed energy distribution between photochemistry and photoprotection pathways in the two cultivars. We suggest that Metamitron inadvertently interacts with photoprotective mechanism-related enzymes in chloroplasts of apple tree leaves. Specifically, we hypothesize that it may interact with the kinases responsible for the induction of state transitions and the Photosystem II repair cycle.

3.
Ecol Evol ; 11(15): 10303-10319, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367576

RESUMEN

Jellyfish are useful genetic indicators for aquatic ecosystems as they have limited mobility and are highly exposed to the water column. By using comparative genomics and the molecular clock (timetree) of Rhizostoma pulmo, we revealed a divergence point between the East and West Mediterranean Sea (MS) populations that occurred 4.59 million years ago (mya). It is suggested that the two distinct ecological environments we know today were formed at this time. We propose that before this divergence, the highly mixed Atlantic and Mediterranean waters led to the wide dispersal of different species including R. pulmo. At 4.59 mya, the Western and Eastern MS were formed, indicating the possibility of a dramatic environmental event. For the first time, we find that for the jellyfish we examined, the division of the MS in east and west is not at the Straits of Sicily as generally thought, but significantly to the east. Using genomics of the Aurelia species, we examined contemporary anthropogenic impacts with a focus on migration of scyphozoa across the Suez Canal (Lessepsian migration). Aurelia sp. is among the few scyphozoa we find in both the MS and the Red Sea, but our DNA analysis revealed that the Red Sea Aurelia sp. did not migrate or mix with MS species. Phyllorhiza punctata results showed that this species was only recently introduced to the MS as a result of anthropogenic transportation activity, such as ballast water discharge, and revealed a migration vector from Australia to the MS. Our findings demonstrate that jellyfish genomes can be used as a phylogeographic molecular tool to trace past events across large temporal scales and reveal invasive species introduction due to human activity.

4.
Environ Microbiol Rep ; 13(5): 744-752, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374209

RESUMEN

The symbioses between the vestimentiferan tubeworms and their chemosynthetic partners (Gammaproteobacteria, Chromatiales and Sedimenticolaceae) hallmark the success of these organisms in hydrothermal vent and hydrocarbon seep deep-sea habitats. The fidelity of these associations varies, as both the hosts and the symbionts can be loose in partner choice. Some tubeworms may host distinct symbiont phylotypes, which often co-occur in a single host individual. To better understand the genetic basis for the promiscuity of tubeworm symbioses, we assembled and investigated metagenome-assembled genomes of two symbiont phylotypes (species, based on the average nucleotide identity < 95%) in Lamellibrachia anaximandri, a vestimentiferan endemic to the Mediterranean Sea, in individuals collected from Palinuro hydrothermal vents (Italy) and hydrocarbon seeps (Eratosthenes seamount and Palmahim disturbance). Using comparative genomics, we show that mainly mobilome and genes involved in defence mechanisms distinguish the symbiont genotypes. While many central metabolic functions are conserved in the tubeworm symbionts, nitrate respiration (Nar, Nap and Nas proteins) is modular, yet this modularity is not linked to phylotype, but rather to geographic location, potentially implying adaptation to the local environment. Our results hint that variation in a single moonlighting protein may be responsible for the fidelity of these symbioses.


Asunto(s)
Gammaproteobacteria , Respiraderos Hidrotermales , Poliquetos , Animales , Respiraderos Hidrotermales/microbiología , Mar Mediterráneo , Poliquetos/genética , Poliquetos/metabolismo , Poliquetos/microbiología , Simbiosis
5.
Microorganisms ; 9(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33466994

RESUMEN

The association between corals and photosynthetic dinoflagellates is one of the most well-known nutritional symbioses, but nowadays it is threatened by global changes. Nutritional exchanges are critical to understanding the performance of this symbiosis under stress conditions. Here, compound-specific δ15N and δ13C values of amino acids (δ15NAA and δ13CAA) were assessed in autotrophic, mixotrophic and heterotrophic holobionts as diagnostic tools to follow nutritional interactions between the partners. Contrary to what was expected, heterotrophy was mainly traced through the δ15N of the symbiont's amino acids (AAs), suggesting that symbionts directly profit from host heterotrophy. The trophic index (TP) ranged from 1.1 to 2.3 from autotrophic to heterotrophic symbionts. In addition, changes in TP across conditions were more significant in the symbionts than in the host. The similar δ13C-AAs signatures of host and symbionts further suggests that symbiont-derived photosynthates are the main source of carbon for AAs synthesis. Symbionts, therefore, appear to be a key component in the AAs biosynthetic pathways, and might, via this obligatory function, play an essential role in the capacity of corals to withstand environmental stress. These novel findings highlight important aspects of the nutritional exchanges in the coral-dinoflagellates symbiosis. In addition, they feature δ15NAA as a useful tool for studies regarding the nutritional exchanges within the coral-symbiodiniaceae symbiosis.

6.
PeerJ ; 8: e9355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612887

RESUMEN

Climate, which sets broad limits for migrating species, is considered a key filter to species migration between contrasting marine environments. The Southeast Mediterranean Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest under recent climate change. Also, it is the most vulnerable marine region to species introductions. Here, we explore the factors which enabled the colonization of the endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS coast, using sclerite oxygen and carbon stable isotope composition (δ 18OSC and δ 13CSC), morphology, and crystallography. The unique conditions presented by the SEMS include a greater temperature range (∼15 °C) and ultra-oligotrophy, and these are reflected by the lower δ 13CSCvalues. This is indicative of a larger metabolic carbon intake during calcification, as well as an increase in crystal size, a decrease of octocoral wart density and thickness of the migrating octocoral sclerites compared to the Red Sea samples. This suggests increased stress conditions, affecting sclerite deposition of the SEMS migrating octocoral. The δ 18Osc range of the migrating M. erythraea indicates a preference for warm water sclerite deposition, similar to the native depositional temperature range of 21-28 °C. These findings are associated with the observed increase of minimum temperatures in winter for this region, at a rate of 0.35 ± 0.27 °C decade-1 over the last 30 years, and thus the region is becoming more hospitable to the Indo-Pacific M. erythraea. This study shows a clear case study of "tropicalization" of the Mediterranean Sea due to recent warming.

7.
Front Mar Sci ; 7: 988, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33409285

RESUMEN

Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30-150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.

8.
PLoS One ; 9(3): e91456, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24614177

RESUMEN

During the 2010-2011 E/V Nautilus exploration of the Levantine basin's sediments at the depth of 300-1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp.-like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column.


Asunto(s)
Hierro/metabolismo , Proteobacteria/metabolismo , Biopelículas , Geografía , Sedimentos Geológicos/microbiología , Israel , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Tecnología de Sensores Remotos , Análisis de Secuencia de ADN , Agua
9.
PLoS One ; 9(1): e84968, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454772

RESUMEN

Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40-63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98-92.19 µmol O2 cm(-2) day(-1). However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between -12.86 - (-10.24) µmol O2 cm(-2) day(-1). But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between -2.83-0.76 µmol O2 cm(-2) day(-1). This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.


Asunto(s)
Antozoos , Estaciones del Año , Animales , Antozoos/fisiología , Secuencia de Bases , Cartilla de ADN , Fotosíntesis , Pigmentos Biológicos , Reacción en Cadena de la Polimerasa , Agua de Mar , Algas Marinas/fisiología , Simbiosis
10.
FEMS Microbiol Ecol ; 87(3): 780-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24283503

RESUMEN

During the 2011 exploration season of the EV Nautilus in the Mediterranean Sea, we conducted a multidisciplinary study, aimed at exploring the microbial populations below the sediment-water interface (SWI) in the hydrocarbon-rich environments of the Levantine basin. Two c. 1000-m-deep locations were sampled: sediments fueled by methane seepage at the toe of the Palmachim disturbance and a patch of euxinic sediment with high sulfide and methane content offshore Acre, enriched by hydrocarbon from an unknown source. We describe the composition of the microbial population in the top 5 cm of the sediment with 1 cm resolution, accompanied by measurements of methane and sulfate concentrations, and the isotopic composition of this methane and sulfate (δ¹³C(CH4), δ¹8O(SO4), and δ³4S(SO4)). Our geochemical and microbiological results indicate the presence of the anaerobic methane oxidation (AOM) coupled to bacterial sulfate reduction (BSR). We show that complex methane and sulfur metabolizing microbial populations are present in both locations, although their community structure and metabolic preferences differ due to potential variation in the hydrocarbon source.


Asunto(s)
Sedimentos Geológicos/microbiología , Metano/metabolismo , Sulfatos/metabolismo , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Isótopos de Carbono/análisis , ADN de Archaea/genética , ADN Bacteriano/genética , Sedimentos Geológicos/química , Mar Mediterráneo , Oxidación-Reducción , Isótopos de Oxígeno/análisis , Filogenia , Isótopos de Azufre/análisis
11.
J Exp Biol ; 212(17): 2760-6, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19684208

RESUMEN

The larvae of most coral species spend some time in the plankton, floating just below the surface and hence exposed to high levels of ultraviolet radiation (UVR). The high levels of UVR are potentially stressful and damaging to DNA and other cellular components, such as proteins, reducing survivorship. Consequently, mechanisms to either shade (prevent) or repair damage potentially play an important role. In this study, the role of photoreactivation in the survival of coral planulae was examined. Photoreactivation is a light-stimulated response to UV-damaged DNA in which photolyase proteins repair damaged DNA. Photoreactivation rates, as well as the localization of photolyase, were explored in planulae under conditions where photoreactivation was or was not inhibited. The results indicate that photoreactivation is the main DNA repair pathway in coral planulae, repairing UV-induced DNA damage swiftly (K=1.75 h(-1) and a half-life of repair of 23 min), with no evidence of any light-independent DNA repair mechanisms, such as nucleotide excision repair (NER), at work. Photolyase mRNA was localized to both the ectoderm and endoderm of the larvae. The amount of cell death in the coral planulae increased significantly when photoreactivation was inhibited, by blocking photoreactivating light. We found that photoreactivation, along with additional UV shielding in the form of five mycosporine-like amino acids, are sufficient for survival in surface tropical waters and that planulae do not accumulate DNA damage despite being exposed to high UVR.


Asunto(s)
Antozoos/genética , Daño del ADN , Reparación del ADN/fisiología , Rayos Ultravioleta , Animales , Antozoos/enzimología , Antozoos/efectos de la radiación , Apoptosis/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/antagonistas & inhibidores , Desoxirribodipirimidina Fotoliasa/metabolismo , Desoxirribodipirimidina Fotoliasa/fisiología , Larva/enzimología , Larva/genética , Larva/efectos de la radiación , ARN Mensajero/metabolismo
12.
JSLS ; 8(3): 245-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15347112

RESUMEN

OBJECTIVES: Laparoscopic colon and rectal surgery requires advanced laparoscopic skills. The aim of this study was to describe a novel technique for laparoscopic-assisted colectomy using only 2 ports and to review our initial experience with this technique for patients with benign colonic pathologies. METHODS: A retrospective chart review of all patients who had laparoscopic-assisted colon surgery using this technique was performed. The technique is described. RESULTS: For right colectomy, a 10-mm trocar for the camera was placed just below the umbilicus and a 5-mm working port just above the umbilicus. The colon was mobilized using one instrument and gravity assistance. The incisions were then connected, and the mobilized colon was pulled through this incision. For left-sided colectomy, the 5-mm working port was placed at the left suprapubic hairline, which was then extended for removal of the specimen. Sixty patients with benign colonic pathologies had laparoscopic-assisted colon surgery using only 2 ports. Conversion to open surgery was required in 4 cases. The average length of the skin incision was 3.82 cm, and the mean length of hospital stay was 4.18 days. Postoperative complications occurred in 11 patients (18%) and included anastomotic leak in 1 patient and wound infection in 2. CONCLUSIONS: Laparoscopic-assisted segmental colectomy using 2 ports is easy and feasible, with minimal skin incisions and fast recovery. Our initial experience suggests that it may be easier for the experienced colorectal surgeon to acquire the skills needed to perform this technique.


Asunto(s)
Colectomía/métodos , Enfermedades del Colon/cirugía , Laparoscopía/métodos , Anciano , Colon Sigmoide/cirugía , Femenino , Humanos , Masculino , Complicaciones Posoperatorias/epidemiología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...