Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Commun ; 14(1): 7135, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932270

RESUMEN

The perturbations of the gut microbiota and metabolites are closely associated with the progression of inflammatory bowel disease (IBD). However, inconsistent findings across studies impede a comprehensive understanding of their roles in IBD and their potential as reliable diagnostic biomarkers. To address this challenge, here we comprehensively analyze 9 metagenomic and 4 metabolomics cohorts of IBD from different populations. Through cross-cohort integrative analysis (CCIA), we identify a consistent characteristic of commensal gut microbiota. Especially, three bacteria, namely Asaccharobacter celatus, Gemmiger formicilis, and Erysipelatoclostridium ramosum, which are rarely reported in IBD. Metagenomic functional analysis reveals that essential gene of Two-component system pathway, linked to fecal calprotectin, are implicated in IBD. Metabolomics analysis shows 36 identified metabolites with significant differences, while the roles of these metabolites in IBD are still unknown. To further elucidate the relationship between gut microbiota and metabolites, we construct multi-omics biological correlation (MOBC) maps, which highlights gut microbial biotransformation deficiencies and significant alterations in aminoacyl-tRNA synthetases. Finally, we identify multi-omics biomarkers for IBD diagnosis, validated across multiple global cohorts (AUROC values ranging from 0.92 to 0.98). Our results offer valuable insights and a significant resource for developing mechanistic hypotheses on host-microbiome interactions in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Multiómica , Enfermedades Inflamatorias del Intestino/metabolismo , Metaboloma , Biomarcadores/metabolismo
2.
Oncogene ; 42(17): 1374-1391, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906654

RESUMEN

Long non-coding RNAs (lncRNAs) play important roles in carcinogenesis. However, the effect of lncRNA on chemoresistance and RNA alternative splicing remains largely unknown. In this study, we identified a novel lncRNA, CACClnc, which was upregulated and associated with chemoresistance and poor prognosis in colorectal cancer (CRC). CACClnc promoted CRC resistance to chemotherapy via promoting DNA repair and enhancing homologous recombination in vitro and in vivo. Mechanistically, CACClnc specifically bound to Y-box binding protein 1 (YB1, a splicing factor) and U2AF65 (a subunit of U2AF splicing factor), promoting the interaction between YB1 and U2AF65, and then modulated alternative splicing (AS) of RAD51 mRNA, and consequently altered CRC cell biology. In addition, expression of exosomal CACClnc in peripheral plasma of CRC patients can effectively predict the chemotherapy effect of patients before treatment. Thus, measuring and targeting CACClnc and its associated pathway could yield valuable insight into clinical management and might ameliorate CRC patients' outcomes.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Empalme Alternativo/genética , Resistencia a Antineoplásicos/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Recombinasa Rad51/genética
3.
Gastroenterology ; 161(5): 1552-1566.e12, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371001

RESUMEN

BACKGROUND & AIMS: Enterotoxigenic Bacteroides fragilis (ETBF) is strongly associated with the occurrence of inflammatory bowel disease (IBD), colitis-associated colorectal cancer, and colorectal cancer (CRC). However, the mechanism of ETBF-induced intestinal inflammation and tumorigenesis remains unclear. METHODS: microRNA sequencing was used to detect the differentially expressed microRNAs in both ETBF-treated cells and exosomes derived from ETBF-inoculated cells. Cell Counting Kit 8 assays were used to evaluate the effect of ETBF and exosomes on CRC cell proliferation. The biological role and mechanism of ETBF-mediated miR-149-3p in colitis and colon carcinogenesis were determined both in vitro and in vivo. RESULTS: ETBF promoted CRC cell proliferation by down-regulating miR-149-3p both in vitro and in vivo. ETBF-down-regulated miR-149-3p depended on METTL14-mediated N6-methyladenosine methylation. As the target gene of miR-149-3p, PHF5A transactivated SOD2 through regulating KAT2A messenger RNA alternative splicing after ETBF treatment in CRC cells. miR-149-3p could be released in exosomes and mediated intercellular communication by modulating T-helper type 17 cell differentiation. The level of plasma exosomal miR-149-3p was gradually decreased from healthy control individuals to patients with IBD and CRC. miR-149-3p, existing in plasma exosomes, negatively correlated with the abundance of ETBF in patients with IBD and CRC. CONCLUSIONS: Exosomal miR-149-3p derived from ETBF-treated cells facilitated T-helper type 17 cell differentiation. ETBF-induced colorectal carcinogenesis depended on down-regulating miR-149-3p and further promoting PHF5A-mediated RNA alternative splicing of KAT2A in CRC cells. Targeting the ETBF/miR-149-3p pathway presents a promising approach to treat patients with intestinal inflammation and CRC with a high amount of ETBF.


Asunto(s)
Bacteroides fragilis/patogenicidad , Colitis Ulcerosa/microbiología , Colon/microbiología , Neoplasias Colorrectales/microbiología , Enfermedad de Crohn/microbiología , Exosomas/microbiología , MicroARNs/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/metabolismo , Células HCT116 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
4.
Signal Transduct Target Ther ; 6(1): 70, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602893

RESUMEN

Long non-coding RNAs (lncRNAs) play key roles in colorectal carcinogenesis. Here, we aimed to identify the risk SNP-induced lncRNAs and to investigate their roles in colorectal carcinogenesis. First, we identified rs6695584 as the causative SNP in 1q41 locus. The A>G mutation of rs6695584 created a protein-binding motif of BATF, altered the enhancer activity, and subsequently activated lncSLCC1 expression. Further validation in two independent CRC cohorts confirmed the upregulation of lncSLCC1 in CRC tissues, and revealed that increased lncSLCC1 expression was associated with poor survival in CRC patients. Mechanistically, lncRNA-SLCC1 interacted with AHR and transcriptionally activated HK2 expression, the crucial enzyme in glucose metabolism, thereby driving the glycolysis pathway and accelerating CRC tumor growth. The functional assays revealed that lncSLCC1 induced glycolysis activation and tumor growth in CRC mediated by HK2. In addition, HK2 was upregulated in colorectal cancer tissues and positively correlated with lncSLCC1 expression and patient survival. Taken together, our findings reveal a risk SNP-mediated oncogene lncRNA-SLCC1 promotes CRC through activating the glycolysis pathway.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Hexoquinasa/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glucólisis/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Transducción de Señal/genética
5.
NPJ Precis Oncol ; 5(1): 7, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580207

RESUMEN

Studies have shown that tumor microenvironment (TME) might affect drug sensitivity and the classification of colorectal cancer (CRC). Using TME-specific gene signature to identify CRC subtypes with distinctive clinical relevance has not yet been tested. A total of 18 "bulk" RNA-seq datasets (total n = 2269) and four single-cell RNA-seq datasets were included in this study. We constructed a "Signature associated with FOLFIRI resistant and Microenvironment" (SFM) that could discriminate both TME and drug sensitivity. Further, SFM subtypes were identified using K-means clustering and verified in three independent cohorts. Nearest template prediction algorithm was used to predict drug response. TME estimation was performed by CIBERSORT and microenvironment cell populations-counter (MCP-counter) methods. We identified six SFM subtypes based on SFM signature that discriminated both TME and drug sensitivity. The SFM subtypes were associated with distinct clinicopathological, molecular and phenotypic characteristics, specific enrichments of gene signatures, signaling pathways, prognosis, gut microbiome patterns, and tumor lymphocytes infiltration. Among them, SFM-C and -F were immune suppressive. SFM-F had higher stromal fraction with epithelial-to-mesenchymal transition phenotype, while SFM-C was characterized as microsatellite instability phenotype which was responsive to immunotherapy. SFM-D, -E, and -F were sensitive to FOLFIRI and FOLFOX, while SFM-A, -B, and -C were responsive to EGFR inhibitors. Finally, SFM subtypes had strong prognostic value in which SFM-E and -F had worse survival than other subtypes. SFM subtypes enable the stratification of CRC with potential chemotherapy response thereby providing more precise therapeutic options for these patients.

6.
Gut ; 70(11): 2123-2137, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33318144

RESUMEN

OBJECTIVE: Microbiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC. DESIGN: 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1. RESULTS: We have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function. CONCLUSION: F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Infecciones por Fusobacterium/genética , Glucólisis/genética , ARN Largo no Codificante/genética , Animales , Biomarcadores de Tumor , Neoplasias Colorrectales/diagnóstico por imagen , Proteínas de Unión al ADN , Fluorodesoxiglucosa F18/farmacocinética , Fusobacterium nucleatum , Microbioma Gastrointestinal , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas , Humanos , Ratones , Fosfopiruvato Hidratasa , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Radiofármacos/farmacocinética , Transducción de Señal , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor
7.
Signal Transduct Target Ther ; 5(1): 121, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641705

Asunto(s)
Betacoronavirus/genética , Colon/virología , Infecciones por Coronavirus/genética , Interacciones Huésped-Patógeno/genética , Neumonía Viral/genética , Receptores Virales/genética , Transcriptoma , Adenoma/etnología , Adenoma/genética , Adenoma/patología , Enzima Convertidora de Angiotensina 2 , Pueblo Asiatico , Basigina/genética , Basigina/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Catepsina B/genética , Catepsina B/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/etnología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Infecciones por Coronavirus/etnología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Furina/genética , Furina/metabolismo , Humanos , Interleucina-6/sangre , Interleucina-6/genética , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/etnología , Neumonía Viral/patología , Neumonía Viral/virología , Receptores Virales/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética , Internalización del Virus
8.
Front Cell Dev Biol ; 8: 293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32478065

RESUMEN

BACKGROUND: Epithelial-Mesenchymal Transition (EMT) is a major process in the initiation of tumor metastasis, where cancer cells lose sessile epithelial potential and gain mesenchymal phenotype. Large-scale cell identity shifts are often orchestrated on an epigenetic level and the interplay between epigenetic factors and EMT progression was still largely unknown. In this study, we tried to identify candidate epigenetic factors that involved in EMT progression. METHODS: Colorectal cancer (CRC) cells were transfected with an arrayed shRNA library targeting 384 genes involved in epigenetic modification. Candidate genes were identified by real-time PCR. Western blot, RNA-seq and gene set enrichment analysis were conducted to confirm the suppressive role of ALKBH4 in EMT. The clinical relevance of ALKBH4 in CRC was investigated in two independent Renji Cohorts and a microarray dataset (GSE21510) from GEO database. In vitro transwell assay and in vivo metastatic tumor model were performed to explore the biological function of ALKBH4 in the metastasis of CRC. Co-IP (Co-Immunoprecipitation) and ChIP (Chromatin Immunoprecipitation) assays were employed to uncover the mechanism. RESULTS: We screened for candidate epigenetic factors that affected EMT process and identified ALKBH4 as a candidate EMT suppressor gene, which was significantly downregulated in CRC patients. Decreased level of ALKBH4 was associated with metastasis and predicted poor prognosis of CRC patients. Follow-up functional experiments illustrated overexpression of ALKBH4 inhibited the invasion ability of CRC cells in vitro, as well as their metastatic capability in vivo. Mechanistically, CO-IP and ChIP assays indicated that ALKBH4 competitively bound WDR5 (a key component of histone methyltransferase complex) and decreased H3K4me3 histone modification on the target genes including MIR21. CONCLUSIONS: This study illustrated that ALKBH4 may function as a novel metastasis suppressor of CRC, and inhibits H3K4me3 modification through binding WDR5 during EMT.

9.
Mol Cancer ; 19(1): 72, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245489

RESUMEN

BACKGROUND: Epigenetic alterations are involved in various aspects of colorectal carcinogenesis. N6-methyladenosine (m6A) modifications of RNAs are emerging as a new layer of epigenetic regulation. As the most abundant chemical modification of eukaryotic mRNA, m6A is essential for the regulation of mRNA stability, splicing, and translation. Alterations of m6A regulatory genes play important roles in the pathogenesis of a variety of human diseases. However, whether this mRNA modification participates in the glucose metabolism of colorectal cancer (CRC) remains uncharacterized. METHODS: Transcriptome-sequencing and liquid chromatography-tandem mass spectrometry (LC-MS) were performed to evaluate the correlation between m6A modifications and glucose metabolism in CRC. Mass spectrometric metabolomics analysis, in vitro and in vivo experiments were conducted to investigate the effects of METTL3 on CRC glycolysis and tumorigenesis. RNA MeRIP-sequencing, immunoprecipitation and RNA stability assay were used to explore the molecular mechanism of METTL3 in CRC. RESULTS: A strong correlation between METTL3 and 18F-FDG uptake was observed in CRC patients from Xuzhou Central Hospital. METTL3 induced-CRC tumorigenesis depends on cell glycolysis in multiple CRC models. Mechanistically, METTL3 directly interacted with the 5'/3'UTR regions of HK2, and the 3'UTR region of SLC2A1 (GLUT1), then further stabilized these two genes and activated the glycolysis pathway. M6A-mediated HK2 and SLC2A1 (GLUT1) stabilization relied on the m6A reader IGF2BP2 or IGF2BP2/3, respectively. CONCLUSIONS: METTL3 is a functional and clinical oncogene in CRC. METTL3 stabilizes HK2 and SLC2A1 (GLUT1) expression in CRC through an m6A-IGF2BP2/3- dependent mechanism. Targeting METTL3 and its pathway offer alternative rational therapeutic targets in CRC patients with high glucose metabolism.


Asunto(s)
Adenosina/análogos & derivados , Neoplasias Colorrectales/patología , Epigénesis Genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Hexoquinasa/metabolismo , Metiltransferasas/metabolismo , Adenosina/química , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Hexoquinasa/genética , Humanos , Metiltransferasas/genética , Ratones , Ratones Desnudos , Pronóstico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Front Cell Dev Biol ; 8: 566932, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33681178

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is highly malignant and cancer metastasis remains the predominant cause of CRC death. The potential molecular mechanism of long non-coding RNA (lncRNAs) in CRC malignance is still poorly elucidated. METHODS: CCMAlnc expression was analyzed by using the Sequence ReadArchive (SRA) database. Target gene expression was examined by real-time PCR and Western blotting. The biological function of CCMAlnc and miR-5001-5p was detected by cell invasion, CCK8 proliferation, and colony formation assays in loss of function and gain of function experiments in vitro. A luciferase assay was performed to validate the target site of miR-5001-5p on the 3'-UTR of HES6 mRNA. RESULTS: CCMAlnc was identified as a novel functional lncRNA in CRC. Elevated CCMAlnc was detected in CRC cells as well as in clinical CRC tissue samples, and the expression of this lncRNA positively correlated with the poor prognosis of CRC patients. Functional validation assays revealed that downregulation of CCMAlnc impaired CRC cell proliferation and invasion in vitro, but upregulation of CCMAlnc reversed this effect. Moreover, CCMAlnc was validated to act as a competing endogenous RNA (ceRNA) that stabilizes the expression of HES6 by downregulating miR-5001-5p. CONCLUSION: CCMAlnc/miR-5001-5p/HES6 signaling is strongly activated to promote CRC malignance. CCMAlnc is defined as a potential candidate biomarker for metastasis prediction in CRC patients and as a potential therapeutic target for CRC treatment.

11.
Oncogene ; 39(6): 1347-1360, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31641208

RESUMEN

Genome-wide association studies (GWASs) implicate 16q22.1 locus in risk for colorectal cancer (CRC). However, the underlying oncogenic mechanisms remain unknown. Here, through comprehensive filtration, we prioritized rs7198799, a common SNP in the second intron of the CDH1, as the putative causal variant. In addition, we found an association of CRC-risk allele C of rs7198799 with elevated transcript level of biological plausible candidate gene ZFP90 via expression quantitative trait loci analysis. Mechanistically, causal variant rs7198799 resides in an enhancer element and remotely regulate ZFP90 expression by targeting the transcription factor NFATC2. Remarkably, CRISPR/Cas9-guided single-nucleotide editing demonstrated the direct effect of rs7198799 on ZFP90 expression and CRC cellular malignant phenotype. Furthermore, ZFP90 affects several oncogenic pathways, including BMP4, and promotes carcinogenesis in patients and in animal models with ZFP90 specific genetic manipulation. Taken together, these findings reveal a risk SNP-mediated long-range regulation on the NFATC2-ZFP90-BMP4 pathway underlying the initiation of CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Cromosomas Humanos Par 16/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Alelos , Animales , Antígenos CD/genética , Apoptosis , Biomarcadores de Tumor/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Cadherinas/genética , Proliferación Celular , Estudios de Cohortes , Neoplasias Colorrectales/patología , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 10(1): 3499, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375671

RESUMEN

Long non-coding RNAs (lncRNAs) contribute to colorectal cancer (CRC). However, the role of lncRNAs in CRC metabolism, especially glucose metabolism remains largely unknown. In this study, we identify a lncRNA, GLCC1, which is significantly upregulated under glucose starvation in CRC cells, supporting cell survival and proliferation by enhancing glycolysis. Mechanistically, GLCC1 stabilizes c-Myc transcriptional factor from ubiquitination by direct interaction with HSP90 chaperon and further specifies the transcriptional modification pattern on c-Myc target genes, such as LDHA, consequently reprogram glycolytic metabolism for CRC proliferation. Clinically, GLCC1 is associated with tumorigenesis, tumor size and predicts poor prognosis. Thus, GLCC1 is mechanistically, functionally, and clinically oncogenic in colorectal cancer. Targeting GLCC1 and its pathway may be meaningful for treating patients with colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/metabolismo , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Femenino , Glucólisis/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Estimación de Kaplan-Meier , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Ubiquitinación/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Inflamm Bowel Dis ; 25(5): 862-874, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30615124

RESUMEN

BACKGROUND: The long noncoding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) has been reported to play a vital role in the development of cancer. Although the link between inflammation and cancer initiation is well established, whether CCAT1 is involved in inflammation and promotes inflammatory bowel disease (IBD) malignancy remains undetermined. We aimed to investigate the expression of CCAT1 in IBD and the effect of CCAT1 overexpression on intestinal epithelial barrier function. METHODS: The relationship between CCAT1 and the inflammation-related pathway was analyzed in both colorectal cancer (CRC) and IBD patients. Gene expression was detected by real-time polymerase chain reaction and Western blot. Transepithelial electrical resistance (TEER) and FD-4 flux measurement were used to test the effect of CCAT1 and miR-185-3p on intestinal epithelial barrier function. Luciferase assay was performed to validate the target site of miR-185-3p on 3'-UTR of MLCK mRNA. RESULTS: Gene set enrichment analysis revealed that several inflammation-related genes were enriched in the CCAT1 high-expressed group of CRC patients. The relationship between CCAT1 and inflammation activation in IBD patients was further confirmed. CCAT1 expression positively correlated with MLCK, which acts as a protein kinase to phosphorylate myosin light chain and induces tight junction protein distribution, whereas it was negatively correlated with miR-185-3p in IBD tissues. We also determined that CCAT1 overexpression increased Caco-2 monolayer permeability and upregulated MLCK. Furthermore, CCAT1-induced MLCK overexpression and IBD disease progression were significantly attenuated by miR-185-3p. CONCLUSIONS: The CCAT1/miR-185-3p/MLCK signaling pathway is strongly activated to destroy barrier function and promotes the pathogenesis of IBD.


Asunto(s)
Permeabilidad de la Membrana Celular , Neoplasias Colorrectales/patología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Uniones Estrechas/patología , Células CACO-2 , Estudios de Casos y Controles , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Transducción de Señal , Uniones Estrechas/genética , Uniones Estrechas/metabolismo
14.
Cell Death Dis ; 9(12): 1177, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518759

RESUMEN

Genome-wide association studies (GWAS) have identified several loci harboring variants that affected the risk of colorectal cancer; however, the specific mechanisms by which germline variation influenced the tumorigenesis of colorectal cancer (CRC) remains unrevealed. We found the T>C variant of rs1317082, locating at the exon 1 of lncRNA RP11-362K14.5 (CCSlnc362), was predicted to be a protective locus for cancer. However, the specific role of CCSlnc362 and the interaction between CCSlnc362 and rs1317082 variation in colorectal cancer and its mechanisms remain unclear. Here we explored the expression and function of CCSlnc362 in CRC cells and tissues. We found lncRNA CCSlnc362 expression was significantly increased in CRC samples. Follow-up functional experiments elucidated that downregulation of CCSlnc362 inhibited cell proliferation, arrested cell cycle, and promoted apoptosis in CRC cells. The T>C variant of rs1317082 at CCSlnc362 exon 1 created a binding site for miR-4658 to reduce the expression of CCSlnc362 and thus decreased the susceptibility to CRC. Our findings have provided supporting evidence for the protective role of rs1317082 variation and the potential oncogenic role of lncRNA CCSlnc362 in CRC. The data shed new light on the relationship between germline variation, miRNAs, and lncRNAs and opened a new avenue for targeted therapy in CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , MicroARNs/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Secuencia de Bases , Sitios de Unión , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Humanos , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Pronóstico , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
15.
Mol Oncol ; 12(11): 1871-1883, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29957874

RESUMEN

Although several prognostic signatures have been developed for gastric cancer (GC), the utility of these tools is limited in clinical practice due to lack of validation with large and multiple independent cohorts, or lack of a statistical test to determine the robustness of the predictive models. Here, a prognostic signature was constructed using a least absolute shrinkage and selection operator (LASSO) Cox regression model and a training dataset with 300 GC patients. The signature was verified in three independent datasets with a total of 658 tumors across multiplatforms. A nomogram based on the signature was built to predict disease-free survival (DFS). Based on the LASSO model, we created a GeneExpressScore signature (GESGC ) classifier comprised of eight mRNA. With this classifier patients could be divided into two subgroups with distinctive prognoses [hazard ratio (HR) = 4.00, 95% confidence interval (CI) = 2.41-6.66, P < 0.0001]. The prognostic value was consistently validated in three independent datasets. Interestingly, the high-GESGC group was associated with invasion, microsatellite stable/epithelial-mesenchymal transition (MSS/EMT), and genomically stable (GS) subtypes. The predictive accuracy of GESGC also outperformed five previously published signatures. Finally, a well-performed nomogram integrating the GESGC and four clinicopathological factors was generated to predict 3- and 5-year DFS. In summary, we describe an eight-mRNA-based signature, GESGC , as a predictive model for disease progression in GC. The robustness of this signature was validated across patient series, populations, and multiplatform datasets.


Asunto(s)
Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias , Neoplasias Gástricas , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Tasa de Supervivencia
16.
Cell Death Dis ; 9(6): 687, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880874

RESUMEN

The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , MicroARNs/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia
17.
Cancer Res ; 78(7): 1751-1765, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374066

RESUMEN

Colorectal cancer includes an invasive stem-like/mesenchymal subtype, but its genetic drivers, functional, and clinical relevance are uncharacterized. Here we report the definition of an altered miRNA signature defining this subtype that includes a major genomic loss of miR-508. Mechanistic investigations showed that this miRNA affected the expression of cadherin CDH1 and the transcription factors ZEB1, SALL4, and BMI1. Loss of miR-508 in colorectal cancer was associated with upregulation of the novel hypoxia-induced long noncoding RNA AK000053. Ectopic expression of miR-508 in colorectal cancer cells blunted epithelial-to-mesenchymal transition (EMT), stemness, migration, and invasive capacity in vitro and in vivo In clinical colorectal cancer specimens, expression of miR-508 negatively correlated with stemness and EMT-associated gene expression and positively correlated with patient survival. Overall, our results showed that miR-508 is a key functional determinant of the stem-like/mesenchymal colorectal cancer subtype and a candidate therapeutic target for its treatment.Significance: These results define a key functional determinant of a stem-like/mesenchymal subtype of colorectal cancers and a candidate therapeutic target for its treatment. Cancer Res; 78(7); 1751-65. ©2018 AACR.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Animales , Antígenos CD/biosíntesis , Células CACO-2 , Cadherinas/biosíntesis , Línea Celular Tumoral , Movimiento Celular/genética , Células HCT116 , Células HT29 , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Invasividad Neoplásica/genética , Trasplante de Neoplasias , Complejo Represivo Polycomb 1/biosíntesis , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Factores de Transcripción/biosíntesis , Trasplante Heterólogo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/biosíntesis
18.
Clin Cancer Res ; 24(6): 1473-1485, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29288235

RESUMEN

Objective: The E3 ubiquitin ligase RNF6 (RING-finger protein 6) plays a crucial role in carcinogenesis. However, the copy number and expression of RNF6 were rarely reported in colorectal cancer. We aimed to explore the mechanical, biological, and clinical role of RNF6 in colorectal cancer initiation and progression.Design: The copy number and expression of RNF6 were analyzed from Tumorscape and The Cancer Genome Atlas (TCGA) datasets. Gene expressions were examined by real-time PCR, Western blot, and immunohistochemical staining. Gene expression profiling studies were performed to identify pivotal genes regulated by RNF6. Biological function of RNF6 on tumor growth and metastasis was detected in vivo and in vitro Role of RNF6 in modulating SHP-1 expression was examined by coimmunoprecipitation and confocal microscopy, respectively.Results: The copy number of RNF6 was significantly amplified in colorectal cancer, and the amplification was associated with RNF6 expression level. Amplification and overexpression of RNF6 positively correlated with patients with colorectal cancer with poor prognosis. The gene set enrichment analysis (GSEA) revealed cell proliferation, and invasion-related genes were enriched in RNF6 high-expressed colorectal cancer cells as well as in patients from TCGA dataset. Downregulation of RNF6 impaired the colorectal cancer cell proliferation and invasion in vitro and in vivo RNF6 may activate the JAK/STAT3 pathway and increase pSTAT3 levels by inducing the ubiquitination and degradation of SHP-1.Conclusions: Genomic amplification drives RNF6 overexpression in colorectal cancer. RNF6 may be a novel biomarker in colorectal carcinogenesis, and RNF6 may increase pSTAT3 level via promoting SHP-1 ubiquitylation and degradation. Targeting the RNF6/SHP-1/STAT3 axis provides a potential therapeutic option for RNF6-amplified tumors. Clin Cancer Res; 24(6); 1473-85. ©2017 AACR.


Asunto(s)
Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/genética , Quinasas Janus/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Factor de Transcripción STAT3/genética , Animales , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas de Unión al ADN/metabolismo , Amplificación de Genes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Quinasas Janus/metabolismo , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Trasplante Heterólogo , Ubiquitinación
19.
J Cancer ; 8(16): 3154-3165, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158787

RESUMEN

FAM83B (family with sequence similarity 83, member B) seems to emerge as a new class of players involved in the development of a variety of malignant tumors. Yet the molecular mechanisms are not well understood. The present study is intended to investigate the expression and function of FAM83B in pancreatic ductal adenocarcinoma (PDAC). In this study, we found that the expression of FAM83B was significantly increased both in PDAC cell lines and PDAC tumor tissues. FAM83B expression was positively related with advanced clinical stage and poor vital status. Higher FAM83B expression predicted shorter overall survival in PDAC patients, regardless of lymphatic metastasis status and histological differentiation. Actually, FAM83B may act as an independent prognostic indicator as well. What's more, down-regulation of FAM83B in PDAC cells contributed to G0/G1 phase arrest and inhibition of cell proliferation. Finally, a subcutaneous xenograft model indicated that knockdown of FAM83B significantly reduced the tumor volume in vivo. Our findings have provided supporting evidence for the potential molecular biomarker role of FAM83B in PDAC. It's of great interest and broad significance to target FAM83B in PDAC, which may conduce to develop a meaningful and effective strategy in the diagnosis and treatment of PDAC.

20.
J Cancer ; 8(13): 2575-2586, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900495

RESUMEN

Current studies indicate that long non-coding RNAs (lncRNAs) are frequently aberrantly expressed in cancers and implicated with prognosis in gastric cancer (GC). We intended to generate a multi-lncRNA signature to improve prognostic prediction of GC. By analyzing ten paired GC and adjacent normal mucosa tissues, 339 differentially expressed lncRNAs were identified as the candidate prognostic biomarkers in GC. Then we used LASSO Cox regression method to build a 12-lncRNA signature and validated it in another independent GEO dataset. An innovative 12-lncRNA signature was established, and it was significantly associated with the disease free survival (DFS) in the training dataset. By applying the 12-lncRNA signature, the training cohort patients could be categorized into high-risk or low-risk subgroup with significantly different DFS (HR = 4.52, 95%CI= 2.49-8.20, P < 0.0001). Similar results were obtained in another independent GEO dataset (HR=1.58, 95%CI=1.05 - 2.38, P=0.0270). Further analysis showed that the prognostic value of this 12-lncRNA signature was independent of AJCC stage and postoperative chemotherapy. Receiver operating characteristic (ROC) analysis showed that the area under receiver operating characteristic curve (AUC) of combined model reached 0.869. Additionally, a well-performed nomogram was constructed for clinicians. Moreover, single-sample gene-set enrichment analysis (ssGSEA) showed that a group of pathways related to drug resistance and cancer metastasis significantly enriched in the high risk patients. A useful innovative 12-lncRNA signature was established for prognostic evaluation of GC. It might complement clinicopathological features and facilitate personalized management of GC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...