Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Blood Adv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820490

RESUMEN

Signal peptide (SP) is essential for protein secretion, and pathogenic variants in the SP of FIX have been identified in hemophilia B (HB). However, the underlying mechanism for the genotype-phenotype correlation of these variants has not been well studied. Here we systematically examined the effects of 13 pathogenic point variants in the SP of FIX using different approaches. Our results showed that these point variants lead to HB by missense variants and/or aberrant pre-mRNA splicing. The missense variants in h-region mainly affected the co-translational translocation function of the SP, and those in c-region caused FIX deficiency mainly by disturbing the co-translational translocation and/or cleavage of the SP. Almost absolute aberrant pre-mRNA splicing was only observed in variants of c.82T>G, but a slight change of splicing patterns was found in variants of c.53G>T, c.77C>A, c.82T>C, and c.83G>A, indicating that these variants might have different degree to affect pre-mRNA splicing. Although two 6-nt deletion aberrant pre-mRNA splicing products caused FIX deficiency by disturbing the SP cleavage, but they could produce some functional mature FIX and vitamin K could increase the secretion of functional FIX. Taken together, our data indicated that pathogenic variants in the SP of FIX caused HB through diverse molecular mechanisms or even a mixture of several mechanisms, and vitamin K availability could be partially attributed to varying bleeding tendencies in patients carrying the same variant in the SP.

2.
J Thromb Haemost ; 21(11): 3124-3137, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37393002

RESUMEN

BACKGROUND: Inherited protein C deficiency (PCD) caused by mutations in protein C (PC) gene (PROC) increases the risk of thrombosis. Missense mutations in PC's signal peptide and propeptide have been reported in patients with PCD, but their pathogenic mechanisms, except mutations in R42 residue, remain unclear. OBJECTIVES: To investigate the pathogenic mechanisms of inherited PCD caused by 11 naturally occurring missense mutations in PC's signal peptide and propeptide. METHODS: Using cell-based assays, we evaluated the impact of these mutations on various aspects such as activities and antigens of secreted PC, intracellular PC expression, subcellular localization of a reporter protein, and propeptide cleavage. Additionally, we investigated their effect on pre-messenger RNA (pre-mRNA) splicing using a minigene splicing assay. RESULTS: Our data revealed that certain missense mutations (L9P, R32C, R40C, R38W, and R42C) disrupted PC secretion by impeding cotranslational translocation to the endoplasmic reticulum or causing endoplasmic reticulum retention. Additionally, some mutations (R38W and R42L/H/S) resulted in abnormal propeptide cleavage. However, a few missense mutations (Q3P, W14G, and V26M) did not account for PCD. Using a minigene splicing assay, we observed that several variations (c.8A>C, c.76G>A, c.94C>T, and c.112C>T) increased the incidence of aberrant pre-mRNA splicing. CONCLUSION: Our findings suggest that variations in PC's signal peptide and propeptide have varying effects on the biological process of PC, including posttranscriptional pre-mRNA splicing, translation, and posttranslational processing. Additionally, a variation could affect the biological process of PC at multiple levels. Except for W14G, our results provide a clear understanding of the relationship between PROC genotype and inherited PCD.


Asunto(s)
Deficiencia de Proteína C , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Señales de Clasificación de Proteína/genética , Empalme del ARN , Mutación , Mutación Missense , ARN Mensajero/genética
3.
J Chromatogr Sci ; 61(8): 766-772, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477207

RESUMEN

A high-performance liquid chromatograph with diode array detector was established for the simultaneous determination of five phenylethanoid glycosides in Syringa pubescens Turcz. The optimal chromatographic conditions were achieved on a Zorbax C18 column using gradient elution with 0.5% aqueous acetic acid and acetonitrile as the mobile phase at the flow rate of 1.0 mL/min. The detection wavelength was developed as follows: 0-10 min, 276 nm; 10-45 min, 332 nm. The validation of the method including linearity, precision, stability, accuracy, repeatability and recovery was tested. The chemometric analysis including hierarchical cluster analysis and principal component analysis was employed to investigate the similarity and difference of samples from different geographical origin. The results revealed that S. pubescens samples were divided into four clusters based on the phenylethanoid glycosides contents. Antioxidant activity of extract was measured using three different methods including α,α-diphenyl-ß-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging assays, and ferric reducing antioxidant power assay. Furthermore, different phenylethanoid glycosides exhibited different contribution to antioxidant capacities. This study provides a foundation for the quality evaluation and offers scientific data for the utilization of S. pubescens resources.


Asunto(s)
Glicósidos , Syringa , Glicósidos/análisis , Antioxidantes , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , China
4.
Leuk Lymphoma ; 64(1): 71-78, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222521

RESUMEN

Although clinical outcomes of CLL have improved with the use of BCL-2 inhibitor, ABT-199, acquired resistance eventually occurs in many cases, which leads to CLL disease progression. Thus, understanding the mechanisms that mediate this relapse is important to design improved therapies. Herein, we report that cytokine IFN-γ, secreted by dysfunctional T cells, enhanced CLL cells resistance to ABT-199. IFN-γ stimulation significantly increased the expression of BCL-2, MCL-1 and BCL-xL. Blocking JAK1/2-STAT3 signaling pathway impaired the expression of these anti-apoptotic proteins after IFN-γ stimulation. The combination of ABT-199 with JAK1/2 inhibitor Ruxolitinib or STAT3 inhibitors Stattic and C188-9 increased malignant B cell death. In summary, we show that IFN-γ enhanced CLL cells resistance to ABT-199 at least in part by up-regulating BCL-2, MCL-1 and BCL-xL expression via JAK1/2-STAT3 pathway, and thus blocking this pathway with inhibitors increased ABT-199 efficiency to induce CLL cell apoptosis, suggesting a potential therapeutically relevant combination to overcome ABT-199 resistance.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Resistencia a Antineoplásicos , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Interferón gamma/farmacología , Interferón gamma/metabolismo , Apoptosis , Nitrofenoles/farmacología , Compuestos de Bifenilo/farmacología , Factor de Transcripción STAT3/metabolismo
5.
Front Oncol ; 12: 1045797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452487

RESUMEN

Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.

6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 646-650, 2022 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-35773773

RESUMEN

γ-glutamyl carboxylase (GGCX), also known as vitamin K-dependent glutamyl carboxylase, catalyzes the posttranslational modification of specific glutamate residues in vitamin K-dependent proteins (VKDPs), and participates multiple biological functions including blood coagulation, bone metabolism, vascular calcification, and cell proliferation. It has been reported originally that GGCX pathogenic variation causes blood coagulation deficiency, which is called as vitamin K-dependent coagulation factor deficiency 1 (VKCFD1). Recently, it has been found that GGCX gene variation results in multiple clinical phenotypes, including dermatological, ophthalmological, skeletal or cardiac abnormalities. Among them, dermatological phenotype is the most common, which is known as pseudoxanthoma elasticum-like syndrome. This paper has reviewed the GGCX pathogenic variation associated phenotypes, in order to increase the recognition of GGCX-related genetic diseases and to help its diagnosis and treatment.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados , Ligasas de Carbono-Carbono , Trastornos de la Coagulación Sanguínea Heredados/diagnóstico , Trastornos de la Coagulación Sanguínea Heredados/enzimología , Trastornos de la Coagulación Sanguínea Heredados/genética , Trastornos de la Coagulación Sanguínea Heredados/metabolismo , Ligasas de Carbono-Carbono/genética , Ligasas de Carbono-Carbono/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Humanos , Fenotipo , Vitamina K/metabolismo , Vitamina K 1
7.
J Thromb Haemost ; 20(9): 1971-1983, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748323

RESUMEN

Vitamin K antagonists (VKAs), such as warfarin, are oral anticoagulants widely used to treat and prevent thromboembolic diseases. Therapeutic use of these drugs requires frequent monitoring and dose adjustments, whereas overdose often causes severe bleeding. Addressing these drawbacks requires mechanistic understandings at cellular and structural levels. As the target of VKAs, vitamin K epoxide reductase (VKOR) generates the active, hydroquinone form of vitamin K, which in turn drives the γ-carboxylation of several coagulation factors required for their activity. Crystal structures revealed that VKAs inhibit VKOR via mimicking its catalytic process. At the active site, two strong hydrogen bonds that facilitate the catalysis also afford the binding specificity for VKAs. Binding of VKAs induces a global change from open to closed conformation. Similar conformational change is induced by substrate binding to promote an electron transfer process that reduces the VKOR active site. In the cellular environment, reducing partner proteins or small reducing molecules may afford electrons to maintain the VKOR activity. The catalysis and VKA inhibition require VKOR in different cellular redox states, explaining the complex kinetics behavior of VKAs. Recent studies also revealed the mechanisms underlying warfarin resistance, warfarin dose variation, and antidoting by vitamin K. These mechanistic understandings may lead to improved anticoagulation strategies targeting the vitamin K cycle.


Asunto(s)
Anticoagulantes , Warfarina , Anticoagulantes/farmacología , Dominio Catalítico , Fibrinolíticos , Humanos , Vitamina K/metabolismo , Vitamina K 1/metabolismo , Vitamina K Epóxido Reductasas/química , Warfarina/química
8.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269902

RESUMEN

Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.


Asunto(s)
Hemofilia A , Hemofilia B , Codón sin Sentido , Factor IX/genética , Factor IX/metabolismo , Hemofilia B/genética , Humanos , Mutación , Fenotipo
9.
FEBS J ; 289(15): 4564-4579, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113495

RESUMEN

Vitamin K epoxide reductases (VKORs) are a large family of integral membrane enzymes found from bacteria to humans. Human VKOR, specific target of warfarin, has both the epoxide and quinone reductase activity to maintain the vitamin K cycle. Bacterial VKOR homologs, however, are insensitive to warfarin inhibition and are quinone reductases incapable of epoxide reduction. What affords the epoxide reductase activity in human VKOR remains unknown. Here, we show that a representative bacterial VKOR homolog can be converted to an epoxide reductase that is also inhibitable by warfarin. To generate this new activity, we first substituted several regions surrounding the active site of bacterial VKOR by those from human VKOR based on comparison of their crystal structures. Subsequent systematic substitutions narrowed down to merely eight residues, with the addition of a membrane anchor domain, that are responsible for the epoxide reductase activity. Substitutions corresponding to N80 and Y139 in human VKOR provide strong hydrogen bonding interactions to facilitate the epoxide reduction. The rest of six substitutions increase the size and change the shape of the substrate-binding pocket, and the membrane anchor domain stabilizes this pocket while allowing certain flexibility for optimal binding of the epoxide substrate. Overall, our study reveals the structural features of the epoxide reductase activity carried out by a subset of VKOR family in the membrane environment.


Asunto(s)
Oxidorreductasas , Warfarina , Compuestos Epoxi , Humanos , Oxidorreductasas/genética , Vitamina K 1/análogos & derivados , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética , Warfarina/química , Warfarina/farmacología
10.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4756-4764, 2022 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-36593208

RESUMEN

Selenium (Se) is an essential trace element for organisms. Se deficiency will cause diseases such as Keshan disease and Kashin-Beck in human being, and huge loss to animal husbandry. Currently available Se supplements have such problems as low Se content, poor bioavailability, and poor safety. Chlorella pyrenoidosa can produce bioavailable and safe organic Se under suitable conditions, which is thus a promising Se supplement. Therefore, in this study, we tried to improve the Se tolerance and accumulation of C. pyrenoidosa by directional adaptation. To be specific, we gradually increased the concentration of Na2SeO3 in medium to domesticate C. pyrenoidosa and optimized the adapting time and concentration gradient of Na2SeO3 during the adaptation. The results showed that the adapted C. pyrenoidosa was more tolerant to Se and had stronger Se enrichment ability. In 5 L fermenter, the adapted strains could tolerate 40 mg/L Na2SeO3 and the synthesis rate of organic Se was 175.6% higher. Then, Se addition method in the 5 L fermenter was optimized. The result demonstrated that addition of Na2SeO3 at 40 mg/L during heterotrophic culture achieved the final dry weight of C. pyrenoidosa cells at 106.4 g/L, content of organic Se at 1 227 mg/kg, and synthesis rate of organic Se at 1.36 mg/(L·h). Compared with the reported highest cell density of 75 g/L and the highest organic Se content of 560 mg/kg, the corresponding figures in this study were 41.9% and 119.1% higher, respectively. In conclusion, directional adaptation can remarkably improve the Se tolerance and enrichment of C. pyrenoidosa.


Asunto(s)
Chlorella , Selenio , Animales , Humanos , Selenio/farmacología , Procesos Heterotróficos
11.
Front Oncol ; 12: 1132485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36866022

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.1045797.].

13.
J Biol Chem ; 296: 100145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33273012

RESUMEN

Vitamin K epoxide reductases (VKORs) constitute a major family of integral membrane thiol oxidoreductases. In humans, VKOR sustains blood coagulation and bone mineralization through the vitamin K cycle. Previous chemical models assumed that the catalysis of human VKOR (hVKOR) starts from a fully reduced active site. This state, however, constitutes only a minor cellular fraction (5.6%). Thus, the mechanism whereby hVKOR catalysis is carried out in the cellular environment remains largely unknown. Here we use quantitative mass spectrometry (MS) and electrophoretic mobility analyses to show that KO likely forms a covalent complex with a cysteine mutant mimicking hVKOR in a partially oxidized state. Trapping of this potential reaction intermediate suggests that the partially oxidized state is catalytically active in cells. To investigate this activity, we analyze the correlation between the cellular activity and the cellular cysteine status of hVKOR. We find that the partially oxidized hVKOR has considerably lower activity than hVKOR with a fully reduced active site. Although there are more partially oxidized hVKOR than fully reduced hVKOR in cells, these two reactive states contribute about equally to the overall hVKOR activity, and hVKOR catalysis can initiate from either of these states. Overall, the combination of MS quantification and biochemical analyses reveals the catalytic mechanism of this integral membrane enzyme in a cellular environment. Furthermore, these results implicate how hVKOR is inhibited by warfarin, one of the most commonly prescribed drugs.


Asunto(s)
Vitamina K 1/análogos & derivados , Vitamina K Epóxido Reductasas/metabolismo , Catálisis , Dominio Catalítico , Células Cultivadas , Humanos , Mutación , Conformación Proteica , Vitamina K 1/química , Vitamina K 1/metabolismo , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética
14.
Science ; 371(6524)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33154105

RESUMEN

Vitamin K antagonists are widely used anticoagulants that target vitamin K epoxide reductases (VKOR), a family of integral membrane enzymes. To elucidate their catalytic cycle and inhibitory mechanism, we report 11 x-ray crystal structures of human VKOR and pufferfish VKOR-like, with substrates and antagonists in different redox states. Substrates entering the active site in a partially oxidized state form cysteine adducts that induce an open-to-closed conformational change, triggering reduction. Binding and catalysis are facilitated by hydrogen-bonding interactions in a hydrophobic pocket. The antagonists bind specifically to the same hydrogen-bonding residues and induce a similar closed conformation. Thus, vitamin K antagonists act through mimicking the key interactions and conformational changes required for the VKOR catalytic cycle.


Asunto(s)
Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Vitamina K Epóxido Reductasas/química , Vitamina K/antagonistas & inhibidores , Animales , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Oxidación-Reducción , Estructura Secundaria de Proteína , Takifugu
15.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2435-2442, 2020 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-33244937

RESUMEN

In recent years, mass spectrometry has been widely used to study membrane protein structure and function. However, the application of mass spectrometry to study integral membrane protein is limited because there are many hydrophobic amino acids in the trans-membrane domain of integral membrane protein to cause low sequence coverage detected by LC-MS/MS. Therefore, we used vitamin K epoxide reductase (VKORC1), a human integral membrane protein, as a model to optimize the digestion conditions of chymotrypsin, and developed an in-gel digestion method of chymotrypsin to improve sequence coverage of membrane protein by mass spectrometry. By exploring the effects of calcium concentration, pH value and buffer system on the percentage of sequence coverage, number of total detected and types of unique peptide, and the size of unique peptide, sequence coverage and peptide diversity could be considered under condition of Tris-HCl buffer with 5-10 mmol/L calcium ion concentration and pH value 8.0-8.5. This method could make the sequence coverage of membrane protein to reach more than 80%. It could be widely used in the study of membrane protein structure and function, identification of interaction site between membrane proteins, and identification of binding site between membrane protein and small molecular drug.


Asunto(s)
Quimotripsina , Proteínas de la Membrana , Secuencia de Aminoácidos , Cromatografía Liquida , Quimotripsina/metabolismo , Digestión , Humanos , Espectrometría de Masas en Tándem , Tripsina , Vitamina K Epóxido Reductasas
16.
EMBO J ; 39(18): e105246, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32974937

RESUMEN

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Asunto(s)
Movimiento Celular , Células Precursoras de Linfocitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animales , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Ratones , Ratones Noqueados , Dominios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
17.
Blood Adv ; 4(15): 3659-3667, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32766856

RESUMEN

Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B. A FIX variants database reports 28 unique missense mutations in these regions that lead to FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that interfere with propeptide cleavage. It remains unclear how other mutations result in FIX deficiency and why patients carrying the same mutation have different bleeding tendencies. Here, we modify a cell-based reporter assay to characterize the missense mutations in the signal peptide and propeptide of FIX. The results show that the level of secreted conformation-specific reporter (SCSR), which has a functional γ-carboxyglutamate (Gla) domain of FIX, decreases significantly in most mutations. The decreased SCSR level is consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease in the SCSR level is caused by several distinct mechanisms, including interfering with cotranslational translocation into the endoplasmic reticulum, protein secretion, γ-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide. Importantly, our results also show that the SCSR levels of most signal peptide and propeptide mutations increase with vitamin K concentration, suggesting that the heterogeneity of bleeding tendencies may be related to vitamin K levels in the body. Thus, oral administration of vitamin K may alleviate the severity of bleeding tendencies in patients with missense mutations in the FIX signal peptide and propeptide regions.


Asunto(s)
Factor IX , Hemofilia B , Factor IX/genética , Factor IX/metabolismo , Hemofilia B/tratamiento farmacológico , Hemofilia B/genética , Humanos , Mutación Missense , Señales de Clasificación de Proteína , Vitamina K
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(8): 811-814, 2020 Aug 10.
Artículo en Chino | MEDLINE | ID: mdl-32761584

RESUMEN

OBJECTIVE: To develop a cell-based system for the diagnosis of vitamin K-dependent coagulation factor deficiency 1 (VKCFD1). METHODS: In HEK293 cells stably expressing the reporter gene FIX-Gla-PC, the gamma-glutamyl carboxylase (GGCX) gene was knocked out by using CRISPR/Cas9 technology. Enzyme-linked immunosorbent assay (ELISA), DNA sequencing and Western blotting were used to identify the GGCX gene knockout cells. A quickchange point variant method was used to construct the GGCX variant. ELISA was used to assess the influence of GGCX variant on the activity of reporter gene. RESULTS: Two monoclonal cell lines with no reporter activity by ELISA was identified. Edition and knockout of the GGCX gene was confirmed by DNA sequencing and Western blotting. The activity of the reporter gene was recovered by transfection of the wild-type GGCX gene. Thereby two monoclonal cells with GGCX knockout were obtained. By comparing the wild-type and pathogenic GGCX variants, the reporter activity was decreased in the pathogenic variants significantly. CONCLUSION: A cell-based system for the detection of GGCX activity was successfully developed, which can be used for the diagnosis of VKCFD1 caused by GGCX variants.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados/genética , Ligasas de Carbono-Carbono/genética , Vitamina K 1 , Secuencia de Bases , Trastornos de la Coagulación Sanguínea Heredados/diagnóstico , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Células HEK293 , Humanos
19.
J Immunol ; 204(1): 58-67, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748347

RESUMEN

The tetraspanin CD53 has been implicated in B cell development and function. CD53 is a transcriptional target of EBF1, a critical transcription factor for early B cell development. Further, human deficiency of CD53 results in recurrent infections and reduced serum Igs. Although prior studies have indicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. In this study, we show that CD53 expression, which is minimal on hematopoietic stem and progenitor cells, increases throughout bone marrow B cell maturation, and mice lacking CD53 have significantly decreased bone marrow, splenic, lymphatic, and peripheral B cells. Mixed bone marrow chimeras show that CD53 functions cell autonomously to promote B lymphopoiesis. Cd53-/- mice have reduced surface expression of IL-7Rα and diminished phosphatidylinositol 3 kinase and JAK/STAT signaling in prepro- and pro-B cells. Signaling through these pathways via IL-7R is essential for early B cell survival and transition from the pro-B to pre-B cell developmental stage. Indeed, we find increased apoptosis in developing B cells and an associated reduction in pre-B and immature B cell populations in the absence of CD53. Coimmunoprecipitation and proximity ligation studies demonstrate physical interaction between CD53 and IL-7R. Together, these data, to our knowledge, suggest a novel role for CD53 during IL-7 signaling to promote early B cell differentiation.


Asunto(s)
Linfocitos B/inmunología , Receptores de Interleucina-7/inmunología , Transducción de Señal/inmunología , Tetraspanina 25/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tetraspanina 25/deficiencia
20.
Biochemistry ; 57(3): 258-266, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29064673

RESUMEN

During oxidative protein folding, disulfide bond formation is catalyzed by thiol oxidoreductases. Through dedicated relay pathways, the disulfide is generated in donor enzymes, passed to carrier enzymes, and subsequently delivered to target proteins. The eukaryotic disulfide donors are flavoenzymes, Ero1 in the endoplasmic reticulum and Erv1 in mitochondria. In prokaryotes, disulfide generation is coupled to quinone reduction, catalyzed by intramembrane donor enzymes, DsbB and VKOR. To catalyze de novo disulfide formation, these different disulfide donors show striking structural convergence at several levels. They share a four-helix bundle core structure at their active site, which contains a CXXC motif at a helical end. They have also evolved a flexible loop with shuttle cysteines to transfer electrons to the active site and relay the disulfide bond to the carrier enzymes. Studies of the prokaryotic VKOR, however, have stirred debate about whether the human homologue adopts the same topology with four transmembrane helices and uses the same electron-transfer mechanism. The controversies have recently been resolved by investigating the human VKOR structure and catalytic process in living cells with a mass spectrometry-based approach. Structural convergence between human VKOR and the disulfide donors is found to underlie cofactor reduction, disulfide generation, and electron transfer.


Asunto(s)
Evolución Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Compuestos de Sulfhidrilo/química , Vitamina K Epóxido Reductasas/química , Catálisis , Secuencia Conservada , Disulfuros/química , Humanos , Isomerismo , Pliegue de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...