Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(5): 054904, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754815

RESUMEN

Colloidal clay Laponite forms a variety of arrested states that display interesting aging behavior. Microrheology has been applied to Laponite-based glasses and gels, but few studies evaluate the influence of probe particle size. In this work, we report the dynamics and microrheology of Laponite-polymer dispersions during aging using passive microrheology with three different probe particle sizes. At early aging times, the neat Laponite dispersion forms an arrested state; the nature of this state (e.g., a repulsive glass or gel) has remained the subject of debate. The addition of polymer retards gelation and melts the arrested state. While this melting has been observed at the macroscale and has been attributed to a re-entrant transition of a repulsive glass to a liquid state, to our knowledge, it has not been observed at the microscale. The delay of the gelation time needed to form an arrested state was found to depend on the polymer concentration and could vary from ∼24 h for neat Laponite to seven days for some Laponite-polymer samples. Significant effects of probe particle sizes are observed from the mean-squared displacement (MSD) curves as small and intermediate probe particles show diffusive motion, while the motion of large particles is restricted. By examining the factor of ⟨Δr2 (τ)⟩a, structural heterogeneity can be confirmed through the strong size-dependence displayed. Different MSD trends of probe particles are obtained at longer aging times, but no significant changes occur after 30 days of aging. Our microrheology results also reveal significant effects of probe particle size.

2.
ACS Appl Bio Mater ; 5(8): 3870-3882, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35895111

RESUMEN

Biofilm formation on the surfaces of indwelling medical devices has become a growing health threat due to the development of antimicrobial resistance to infection-causing bacteria. For example, ventilator-associated pneumonia caused by Pseudomonas and Staphylococci species has become a significant concern in treatment of patients during COVID-19 pandemic. Nanostructured surfaces with antifouling activity are of interest as a promising strategy to prevent bacterial adhesion without triggering drug resistance. In this study, we report a facile evaporative approach to prepare block copolymer film coatings with nanoscale topography that resist bacterial adhesion. The initial attachment of the target bacterium Pseudomonas aeruginosa PAO1 to copolymer films as well as homopolymer films was evaluated by fluorescence microscopy. Significant reduction in bacterial adhesion (93-99% less) and area coverage (>92% less) on the copolymer films was observed compared with that on the control and homopolymer films [poly(methacrylic acid) (PMAA)─only 40 and 23% less, respectively]. The surfaces of poly(styrene)-PMAA copolymer films with patterned nanoscale topography that contains sharp peaks ranging from 20 to 80 nm spaced at 30-50 nm were confirmed by atomic force microscopy and the corresponding surface morphology analysis. Investigation of the surface wettability and surface potential of polymer films assists in understanding the effect of surface properties on the bacterial attachment. Comparison of bacterial growth studies in polymer solutions with the growth studies on coatings highlights the importance of physical nanostructure in resisting bacterial adhesion, as opposed to chemical characteristics of the copolymers. Such self-patterned antifouling surface coatings, produced with a straightforward and energy-efficient approach, could provide a convenient and effective method to resist bacterial fouling on the surface of medical devices and reduce device-associated infections.


Asunto(s)
Adhesión Bacteriana , COVID-19 , Biopelículas , Humanos , Pandemias , Polímeros/química
3.
Colloids Surf B Biointerfaces ; 202: 111641, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33706161

RESUMEN

Perfluorocarbon (PFC) nanoemulsions have great potential in biomedical applications due to their unique chemical stability, biocompatibility, and possibilities for enhanced oxygen supply. The addition of amphiphilic block copolymers promotes the formation and long-term stability of emulsion-based gels. In this work, we report the systematic study of the impact of adding amphiphilic triblock copolymers to water-in-perfluorocarbon nanoemulsions on their structure and viscoelasticity, utilizing small-angle neutron and X-ray scattering (SANS and SAXS) and rheology. We find that an intermediate concentration of copolymer yields the highest strength of attraction between droplets, corresponding to a maximum in the elasticity and storage modulus. The stability and viscoelastic moduli can be tuned via the amount of copolymer and surfactant along with the volume fraction of aqueous phase. SANS provides the detail on nanostructure and can be fit to a spherical core-shell form factor with a square-well hard sphere structure factor. The PFC nanoemulsion system displays thermoresponsive and thermoreversible properties in temperature sweeps.


Asunto(s)
Fluorocarburos , Geles , Reología , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Polym Chem ; 11(34): 5424-5430, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-33281956

RESUMEN

A series of ionic amphiphilic alternating copolymers were characterized via SAXS, TEM and DLS to help understand factors that could potentially affect self-assembly, including the degree of polymerization, the length of hydrophobic spacers between ionic units, the distance between charged groups and polymer backbone, solvent envrioment and counterions.

5.
ACS Appl Mater Interfaces ; 8(36): 24273-80, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27548426

RESUMEN

Complex interactions between antibiotics and graphene-based materials determine both the adsorption performance of graphene-based materials and the transport behaviors of antibiotics in water. In this work, such interactions were investigated through adsorption experiments, instrumental analyses and theoretical DFT calculations. Three typical antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) and tetracycline (TC)) and different graphene-based materials (divided into two groups: graphene oxides-based ones (GOs) and reduced GOs (RGOs)) were employed. Optimal adsorption pHs for NOR, SDZ, and TC are 6.2, 4.0, and 4.0, respectively. At corresponding optimal pHs, NOR favored RGOs (adsorption capability: ∼50 mg/g) while SDZ preferred GOs (∼17 mg/g); All adsorbents exhibited similar uptake of TC (∼70 mg/g). Similar amounts of edge carboxyls of both GOs and RGOs wielded electrostatic attraction with NOR and TC, but not with SDZ. According to DFT-calculated most-stable-conformations of antibiotics-adsorbents complexes, the intrinsic distinction between GOs and RGOs was the different amounts of sp(2) and sp(3) hybridization regions: π-π electron donor-acceptor effect of antibiotic-sp(2)/sp(3) and H-bonds of antibiotic-sp(3) coexisted. Binding energy (BE) of the former was larger for NOR; the latter interaction was stronger for SDZ; two species of TC at the optimal pH, i.e., TC(+) and TC(0), possessed larger BE with sp(3) and sp(2) regions, respectively.

6.
Chemosphere ; 161: 482-490, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27459160

RESUMEN

A flocculation method was used for the removal of trace nonylphenol (NP) from synthetic surface water containing natural organic matters (humic acid, HA) and suspended inorganic particles (kaolin). A polymeric flocculant (CMCND), with enhanced cationic property and unique switchable hydrophobic/hydrophilic characteristic, was specially designed for this application. CMCND showed a high efficiency for trace NP removal, turbidity and UV254 abatements: under optimized conditions (pH: 4; T: 35 °C; dosage: 40 mg/L), the removal of NP reached up to 79%. By using dosage-pH flocculation diagrams and correlation analyses as tools, kaolin and HA were found to exert synergistic effects on NP removal, with the aid of CMCND; the synergistic effect of HA is higher due to π-π stacking. Zeta potential-dosage profiles clearly demonstrated charge neutralization predominated at pH 4, due to the strong cationic groups in the flocculant. Floc size monitoring displayed that the delayed phase transformation process (from hydrophilicity to hydrophobicity) of CMCND at 35 °C enhanced NP removal. In addition, spectral analyses clarified the interactions among CMCND, NP, kaolin and HA: charge attraction and hydrophobic interaction between CMCND and NP played the key roles. The findings are of significance for removing endocrine-disrupting chemicals in environmental remediation.


Asunto(s)
Celulosa/química , Sustancias Húmicas/análisis , Caolín/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Floculación , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Fenoles/química , Polímeros/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA