Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(8): eade2540, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812304

RESUMEN

Surface levels of membrane proteins are determined by a dynamic balance between exocytosis-mediated surface delivery and endocytosis-dependent retrieval from the cell surface. Imbalances in surface protein levels perturb surface protein homeostasis and cause major forms of human disease such as type 2 diabetes and neurological disorders. Here, we found a Reps1-Ralbp1-RalA module in the exocytic pathway broadly regulating surface protein levels. Reps1 and Ralbp1 form a binary complex that recognizes RalA, a vesicle-bound small guanosine triphosphatases (GTPase) promoting exocytosis through interacting with the exocyst complex. RalA binding results in Reps1 release and formation of a Ralbp1-RalA binary complex. Ralbp1 selectively recognizes GTP-bound RalA but is not a RalA effector. Instead, Ralbp1 binding maintains RalA in an active GTP-bound state. These studies uncovered a segment in the exocytic pathway and, more broadly, revealed a previously unrecognized regulatory mechanism for small GTPases, GTP state stabilization.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Exocitosis , Guanosina Trifosfato/metabolismo , Proteínas de Unión al Calcio , Transportadoras de Casetes de Unión a ATP , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP ral/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(2): e2205199120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598941

RESUMEN

Assembly of protein complexes is facilitated by assembly chaperones. Alpha and gamma adaptin-binding protein (AAGAB) is a chaperone governing the assembly of the heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) involved in clathrin-mediated membrane trafficking. Here, we found that before AP1/2 binding, AAGAB exists as a homodimer. AAGAB dimerization is mediated by its C-terminal domain (CTD), which is critical for AAGAB stability and is missing in mutant proteins found in patients with the skin disease punctate palmoplantar keratoderma type 1 (PPKP1). We solved the crystal structure of the dimerization-mediating CTD, revealing an antiparallel dimer of bent helices. Interestingly, AAGAB uses the same CTD to recognize and stabilize the γ subunit in the AP1 complex and the α subunit in the AP2 complex, forming binary complexes containing only one copy of AAGAB. These findings demonstrate a dual role of CTD in stabilizing resting AAGAB and binding to substrates, providing a molecular explanation for disease-causing AAGAB mutations. The oligomerization state transition mechanism may also underlie the functions of other assembly chaperones.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Queratodermia Palmoplantar , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/genética , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Clatrina/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo
4.
Commun Biol ; 5(1): 1223, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369335

RESUMEN

A fundamentally novel function proposed for extracellular vesicles (EVs) is to transfer bioactive molecules in intercellular signaling. In this minireview, we discuss recent progress on EV-mediated cargo transfer in the central nervous system (CNS) and major gaps in previous studies. We also suggest a set of experiments necessary for bridging the gaps and establishing the physiological roles of EV-mediated cargo transfer.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Sistema Nervioso Central
5.
Methods Mol Biol ; 2473: 181-194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819767

RESUMEN

Endocytosis mediates the entry of surface and extracellular cargoes into the cell. In this chapter, we describe assays to quantitively measure the endocytosis of both soluble and transmembrane cargo proteins, taking advantage of cleavable fluorescent dyes labeling cargo proteins or antibodies recognizing cargo proteins. After removing surface-bound fluorescent dye, internalized cargoes are measured using confocal imaging and flow cytometry. We also describe strategies to determine the role of clathrin-mediated endocytosis (CME) in the internalization of a cargo by using a small molecule inhibitor of CME and knockout (KO) of the AAGAB gene, which encodes an essential regulator of CME.


Asunto(s)
Endocitosis , Colorantes Fluorescentes , Endocitosis/genética
6.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494650

RESUMEN

Multimeric cargo adaptors such as AP2 play central roles in intracellular membrane trafficking. We recently discovered that the assembly of the AP2 adaptor complex, a key player in clathrin-mediated endocytosis, is a highly organized process controlled by alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34). In this study, we demonstrate that besides AP2, AAGAB also regulates the assembly of AP1, a cargo adaptor involved in clathrin-mediated transport between the trans-Golgi network and the endosome. However, AAGAB is not involved in the formation of other adaptor complexes, including AP3. AAGAB promotes AP1 assembly by binding and stabilizing the γ and σ subunits of AP1, and its mutation abolishes AP1 assembly and disrupts AP1-mediated cargo trafficking. Comparative proteomic analyses indicate that AAGAB mutation massively alters surface protein homeostasis, and its loss-of-function phenotypes reflect the synergistic effects of AP1 and AP2 deficiency. Taken together, these findings establish AAGAB as an assembly chaperone for both AP1 and AP2 adaptors and pave the way for understanding the pathogenesis of AAGAB-linked diseases.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Complejo 1 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Clatrina/genética , Endocitosis , Proteómica
7.
Sci Rep ; 11(1): 7969, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846418

RESUMEN

For large-scale integrated electronic equipment, the complex operating mechanisms make fault detection very difficult. Therefore, it is important to accurately identify analog circuit faults in a timely manner. To overcome this problem, this paper proposes a novel fault diagnosis method based on the deep belief network (DBN) and restricted Boltzmann machine (RBM) optimized by the gray wolf optimization (GWO) algorithm. First, DBN is used to extract the deep features of the analog circuit output signal. Then, GWO is used to optimize the penalty factor c and kernel parameter g of support vector machine (SVM). Finally, GWO-SVM is used to diagnose the signal features extracted by the DBN. Fault diagnosis simulation was conducted for the Sallen-Key band-pass filter and a four-opamp biquad highpass filter. The experimental results show that compared with the existing algorithms, the algorithm proposed in this paper improves the accuracy of Sallen-Key bandpass filter circuit to 100% and shortens the fault diagnosis time by about 90%; for four-opamp biquad highpass filter, the accuracy rate has increased to 99.68%, and the fault diagnosis time has been shortened by approximately 75%, and reduce hundreds of iterations. Moreover, the experimental results reveal that the proposed fault diagnosis method greatly improves the accuracy of analog circuit fault diagnosis, which solves a major problem in analog circuitry and has great significance for the future development of relevant applications.

8.
Cell Rep ; 34(2): 108611, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440145

RESUMEN

Intracellular vesicle fusion is catalyzed by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-anchored v-SNAREs pair with target membrane-associated t-SNAREs to form trans-SNARE complexes, releasing free energy to drive membrane fusion. However, trans-SNARE complexes are unable to assemble efficiently unless activated by Sec1/Munc18 (SM) proteins. Here, we demonstrate that SNAREs become fully active when the v-SNARE is split into two fragments, eliminating the requirement of SM protein activation. Mechanistically, v-SNARE splitting accelerates the zippering of trans-SNARE complexes, mimicking the stimulatory function of SM proteins. Thus, SNAREs possess the full potential to drive efficient membrane fusion but are suppressed by a conformational constraint. This constraint is removed by SM protein activation or v-SNARE splitting. We suggest that ancestral SNAREs originally evolved to be fully active in the absence of SM proteins. Later, a conformational constraint coevolved with SM proteins to achieve the vesicle fusion specificity demanded by complex endomembrane systems.


Asunto(s)
Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Comunicación Celular , Humanos , Fusión de Membrana/fisiología
9.
PLoS Pathog ; 16(12): e1009119, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290418

RESUMEN

Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Animales , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Macrófagos/microbiología , Lípidos de la Membrana , Ratones , Ratones Endogámicos C57BL
10.
Dev Cell ; 55(6): 784-801.e9, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33296682

RESUMEN

Getting large macromolecules through the plasma membrane and endosomal barriers remains a major challenge. Here, we report a generalizable method of delivering proteins and ribonucleoproteins (RNPs) to cells in vitro and mouse liver tissue in vivo with engineered ectosomes. These ectosomes, referred to as "Gectosomes," are designed to co-encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP complementation. We found that this method enables active cargo loading, improves the specific activity of cargo delivery, and facilitates Gectosome purification. Experimental and mathematical modeling analyses suggest that active cargo loading reduces non-specific encapsulation of cellular proteins, particularly nucleic-acid-binding proteins. Using Gectosomes that encapsulate Cre, Ago2, and SaCas9, we demonstrate their ability to execute designed modifications of endogenous genes in cell lines in vitro and mouse liver tissue in vivo, paving the way toward applications of this technology for the treatment of a wide range of human diseases.


Asunto(s)
Exosomas/metabolismo , Edición Génica/métodos , Técnicas de Transferencia de Gen , Animales , Proteínas Argonautas/metabolismo , Caspasa 9/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Integrasas/metabolismo , Hígado/metabolismo , Glicoproteínas de Membrana/administración & dosificación , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/metabolismo
11.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33246952

RESUMEN

Major histocompatibility complex (MHC)-unrestricted cytotoxic lymphocytes (CLs) such as natural killer (NK) cells can detect and destroy tumor and virus-infected cells resistant to T cell-mediated killing. Here, we performed genome-wide genetic screens to identify tumor-intrinsic genes regulating killing by MHC-unrestricted CLs. A group of genes identified in our screens encode enzymes for the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is not involved in tumor response to T cell-mediated cytotoxicity. Another gene identified in the screens was PBRM1, which encodes a subunit of the PBAF form of the SWI/SNF chromatin-remodeling complex. PBRM1 mutations in tumor cells cause resistance to MHC-unrestricted killing, in contrast to their sensitizing effects on T cell-mediated killing. PBRM1 and the GPI biosynthetic pathway regulate the ligands of NK cell receptors in tumor cells and promote cytolytic granule secretion in CLs. The regulators identified in this work represent potential targets for cancer immunotherapy.


Asunto(s)
Citotoxicidad Inmunológica , Neoplasias , Vías Biosintéticas , Proteínas de Unión al ADN/genética , Glicosilfosfatidilinositoles , Antígenos de Histocompatibilidad , Humanos , Células Asesinas Naturales , Complejo Mayor de Histocompatibilidad , Neoplasias/genética , Factores de Transcripción/genética
12.
Appl Opt ; 59(24): 7455-7461, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32902514

RESUMEN

We propose a filterless full-duplex radio-over-fiber system based on polarization multiplexing and demonstrate the generation of an 80 GHz millimeter wave using two Mach-Zehnder modulators. By adjusting the polarization direction, we could generate an 80 GHz frequency millimeter-wave signal and restore the original pure light carrier, providing a light source for the uplink. The simulation results show that the 80 GHz millimeter-wave signal was obtained with a 23.48 dB radio-frequency sideband suppression ratio. Furthermore, we showed that the proposed scheme is relatively flexible and free from the limitation of filter fixed bandwidth in addition to being simple and economical.

13.
Traffic ; 21(10): 636-646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32851733

RESUMEN

Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.


Asunto(s)
Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina , Proteínas del Tejido Nervioso/fisiología , Proteínas R-SNARE/fisiología , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Insulina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Proteínas R-SNARE/genética
14.
J Control Release ; 326: 324-334, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682903

RESUMEN

Bone marrow (BM) is the central immunological organ and the origin of hematological diseases. Efficient and specific drug delivery to the BM is an unmet need. We tested delivery of fluorescent indocarbocyanine lipids (ICLs, DiR, DiD, DiI) as a model lipophilic cargo, via different carriers. Systemically injected T-lymphocyte cell line Jurkat delivered ICLs to the BM more efficiently than erythrocytes, and more selectively than PEGylated liposomes. Near infrared imaging showed that the delivery was restricted to the BM, lungs, liver and spleen, with no accumulation in the kidneys, brain, heart, intestines, fat tissue and pancreas. Following systemic injection of ICL-labeled cells in immunodeficient or immunocompetent mice, few cells arrived in the BM intact. However, between 5 and 10% of BM cells were ICL-positive. Confocal microscopy of intact BM confirmed that ICLs are delivered independently of the injected cells. Flow cytometry analysis showed that the lipid accumulated in both CD11b + and CD11b- cells, and in hematopoietic progenitors. In a xenograft model of acute myeloid leukemia, a single injection of 10 million Jurkat cells delivered DiD to ~15% of the tumor cells. ICL-labeled cells disappeared from blood almost immediately post-intravenous injection, but numerous cell-derived microparticles continued to circulate in blood. The microparticle particle formation was not due to the ICL labeling or complement attack and was observed after injection of both syngeneic and xenogeneic cells. Injection of microparticles produced in vitro from Jurkat cells resulted in a similar ICL delivery as the injection of intact Jurkat cells. Our results demonstrate a novel delivery paradigm wherein systemically injected cells release microparticles that accumulate in the BM. In addition, the results have important implications for studies involving systemically administered cell therapies.


Asunto(s)
Médula Ósea , Micropartículas Derivadas de Células , Animales , Células de la Médula Ósea , Tratamiento Basado en Trasplante de Células y Tejidos , Citometría de Flujo , Ratones
15.
Proc Natl Acad Sci U S A ; 117(20): 10865-10875, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366666

RESUMEN

Cell-to-cell transmission of misfolding-prone α-synuclein (α-Syn) has emerged as a key pathological event in Parkinson's disease. This process is initiated when α-Syn-bearing fibrils enter cells via clathrin-mediated endocytosis, but the underlying mechanisms are unclear. Using a CRISPR-mediated knockout screen, we identify SLC35B2 and myosin-7B (MYO7B) as critical endocytosis regulators for α-Syn preformed fibrils (PFFs). We show that SLC35B2, as a key regulator of heparan sulfate proteoglycan (HSPG) biosynthesis, is essential for recruiting α-Syn PFFs to the cell surface because this process is mediated by interactions between negatively charged sugar moieties of HSPGs and clustered K-T-K motifs in α-Syn PFFs. By contrast, MYO7B regulates α-Syn PFF cell entry by maintaining a plasma membrane-associated actin network that controls membrane dynamics. Without MYO7B or actin filaments, many clathrin-coated pits fail to be severed from the membrane, causing accumulation of large clathrin-containing "scars" on the cell surface. Intriguingly, the requirement for MYO7B in endocytosis is restricted to α-Syn PFFs and other polycation-bearing cargos that enter cells via HSPGs. Thus, our study not only defines regulatory factors for α-Syn PFF endocytosis, but also reveals a previously unknown endocytosis mechanism for HSPG-binding cargos in general, which requires forces generated by MYO7B and actin filaments.


Asunto(s)
Endocitosis/fisiología , Miosinas/química , Miosinas/metabolismo , Polielectrolitos/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Clatrina/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Modelos Moleculares , Enfermedad de Parkinson/metabolismo , Conformación Proteica , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
16.
Sci Rep ; 10(1): 6077, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269327

RESUMEN

In practical applications of signal detection, the roughness of a target surface significantly affects detection efficiency. In this paper, we propose a signal processing method that improves the sensitivity of a detection system by up to 100 times. In experiments, the target vibration measurement system successfully captured an automotive vibration power spectrum using the proposed signal processing method. This technology opens a new avenue for development in the field of rough surface target detection and recognition.

17.
Cell Rep ; 29(13): 4583-4592.e3, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875562

RESUMEN

Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE/química , Vesículas Transportadoras/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Membrana Celular/metabolismo , Drosophila melanogaster , Humanos , Membrana Dobles de Lípidos/metabolismo , Ratones , Modelos Moleculares , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Proteínas SNARE/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo , Vesículas Transportadoras/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Xenopus laevis
18.
J Biol Chem ; 294(52): 19988-19996, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31740584

RESUMEN

Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.


Asunto(s)
Exocitosis/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteínas de Transporte Vesicular/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Edición Génica , Células HeLa , Humanos , Ratones , Transducción de Señal , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/metabolismo
19.
Dev Cell ; 50(4): 436-446.e5, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353312

RESUMEN

Multimeric adaptors are broadly involved in vesicle-mediated membrane trafficking. AP2 adaptor, in particular, plays a central role in clathrin-mediated endocytosis (CME) by recruiting cargo and clathrin to endocytic sites. It is generally thought that trafficking adaptors such as AP2 adaptor assemble spontaneously. In this work, however, we discovered that AP2 adaptor assembly is an ordered process controlled by alpha and gamma adaptin binding protein (AAGAB), an uncharacterized factor identified in our genome-wide genetic screen of CME. AAGAB guides the sequential association of AP2 subunits and stabilizes assembly intermediates. Without the assistance of AAGAB, AP2 subunits fail to form the adaptor complex, leading to their degradation. The function of AAGAB is abrogated by a mutation that causes punctate palmoplantar keratoderma type 1 (PPKP1), a human skin disease. Since other multimeric trafficking adaptors operate in an analogous manner to AP2 adaptor, their assembly likely involves a similar regulatory mechanism.


Asunto(s)
Complejo 2 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Endocitosis/genética , Secuencia de Aminoácidos/genética , Membrana Celular/genética , Clatrina/genética , Humanos , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/patología , Unión Proteica/genética , Transporte de Proteínas/genética , Proteolisis
20.
Methods Mol Biol ; 1860: 237-249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30317509

RESUMEN

The fusion of intracellular vesicles with target membranes is mediated by two classes of conserved molecules-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAP receptors or SNAREs) and Sec1/Munc18 (SM) proteins. A conserved function of SM proteins is to recognize their cognate trans-SNARE complexes and accelerate fusion kinetics. Here, we describe a physiologically relevant reconstitution system in which macromolecular crowding agents are included to recapitulate the crowded intracellular environment. Through this system, we elucidate the molecular mechanisms by which SNAREs and SM proteins drive vesicle fusion.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Fusión de Membrana , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Cinética , Proteínas Munc18/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas SNARE/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...