Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 7(4): e246228, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607626

RESUMEN

Importance: Less than 5% of patients with cancer enroll in a clinical trial, partly due to financial and logistic burdens, especially among underserved populations. The COVID-19 pandemic marked a substantial shift in the adoption of decentralized trial operations by pharmaceutical companies. Objective: To assess the current global state of adoption of decentralized trial technologies, understand factors that may be driving or preventing adoption, and highlight aspirations and direction for industry to enable more patient-centric trials. Design, Setting, and Participants: The Bloomberg New Economy International Cancer Coalition, composed of patient advocacy, industry, government regulator, and academic medical center representatives, developed a survey directed to global biopharmaceutical companies of the coalition from October 1 through December 31, 2022, with a focus on registrational clinical trials. The data for this survey study were analyzed between January 1 and 31, 2023. Exposure: Adoption of decentralized clinical trial technologies. Main Outcomes and Measures: The survey measured (1) outcomes of different remote monitoring and data collection technologies on patient centricity, (2) adoption of these technologies in oncology and all therapeutic areas, and (3) barriers and facilitators to adoption using descriptive statistics. Results: All 8 invited coalition companies completed the survey, representing 33% of the oncology market by revenues in 2021. Across nearly all technologies, adoption in oncology trials lags that of all trials. In the current state, electronic diaries and electronic clinical outcome assessments are the most used technology, with a mean (SD) of 56% (19%) and 51% (29%) adoption for all trials and oncology trials, respectively, whereas visits within local physician networks is the least adopted at a mean (SD) of 12% (18%) and 7% (9%), respectively. Looking forward, the difference between the current and aspired adoption rate in 5 years for oncology is large, with respondents expecting a 40% or greater absolute adoption increase in 8 of the 11 technologies surveyed. Furthermore, digitally enabled recruitment, local imaging capabilities, and local physician networks were identified as technologies that could be most effective for improving patient centricity in the long term. Conclusions and Relevance: These findings may help to galvanize momentum toward greater adoption of enabling technologies to support a new paradigm of trials that are more accessible, less burdensome, and more inclusive.


Asunto(s)
Ensayos Clínicos como Asunto , Neoplasias , Humanos , Recolección de Datos , Oncología Médica
2.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993642

RESUMEN

Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.

3.
Nat Commun ; 12(1): 585, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500419

RESUMEN

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.


Asunto(s)
Síndrome de Bloom/genética , Replicación del ADN , ADN de Cadena Simple/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Secuencias de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitosis/genética , Mutación , Unión Proteica/genética , Dominios Proteicos/genética , RecQ Helicasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación/genética
4.
Nat Biomed Eng ; 5(2): 190-194, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32989284

RESUMEN

Prime editing enables diverse genomic alterations to be written into target sites without requiring double-strand breaks or donor templates. The design of prime-editing guide RNAs (pegRNAs), which must be customized for each edit, can however be complex and time consuming. Compared with single guide RNAs (sgRNAs), pegRNAs have an additional 3' extension composed of a primer binding site and a reverse-transcription template. Here we report a web tool, which we named pegFinder ( http://pegfinder.sidichenlab.org ), for the rapid design of pegRNAs from reference and edited DNA sequences. pegFinder can incorporate sgRNA on-target and off-target scoring predictions into its ranking system, and nominates secondary nicking sgRNAs for increasing editing efficiency. CRISPR-associated protein 9 variants with expanded targeting ranges are also supported. To facilitate downstream experimentation, pegFinder produces a comprehensive table of candidate pegRNAs, along with oligonucleotide sequences for cloning.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Programas Informáticos , Algoritmos , Proteína 9 Asociada a CRISPR/genética , Células HEK293 , Humanos , Internet
5.
Cell ; 178(5): 1189-1204.e23, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442407

RESUMEN

CD8 T cells play essential roles in anti-tumor immune responses. Here, we performed genome-scale CRISPR screens in CD8 T cells directly under cancer immunotherapy settings and identified regulators of tumor infiltration and degranulation. The in vivo screen robustly re-identified canonical immunotherapy targets such as PD-1 and Tim-3, along with genes that have not been characterized in T cells. The infiltration and degranulation screens converged on an RNA helicase Dhx37. Dhx37 knockout enhanced the efficacy of antigen-specific CD8 T cells against triple-negative breast cancer in vivo. Immunological characterization in mouse and human CD8 T cells revealed that DHX37 suppresses effector functions, cytokine production, and T cell activation. Transcriptomic profiling and biochemical interrogation revealed a role for DHX37 in modulating NF-κB. These data demonstrate high-throughput in vivo genetic screens for immunotherapy target discovery and establishes DHX37 as a functional regulator of CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , ARN Helicasas/genética , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Memoria Inmunológica , Inmunoterapia , Masculino , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , ARN Helicasas/deficiencia , ARN Guía de Kinetoplastida/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA