Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Front Mol Biosci ; 11: 1375360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962282

RESUMEN

Background: High altitude de-acclimatization (HADA) is gradually becoming a public health concern as millions of individuals of different occupations migrate to high-altitude areas for work due to economic growth in plateau areas. HADA affects people who return to lower elevations after exposure to high altitudes. It causes significant physiological and functional changes that can negatively impact health and even endanger life. However, uncertainties persist about the detailed mechanisms underlying HADA. Methods: We established a population cohort of individuals with HADA and assessed variations in metabolite composition. Plasm samples of four groups, including subjects staying at plain (P) and high altitude (H) as well as subjects suffering from HADA syndrome with almost no reaction (r3) and mild-to-moderate reaction (R3) after returning to plain from high altitude, were collected and analyzed by Liquid Chromatography-Mass Spectrometry metabolomic. Multivariate statistical analyses were used to explore significant differences and potential clinical prospect of metabolites. Result: Although significantly different on current HADAS diagnostic symptom score, there were no differences in 17 usual clinical indices between r3 and R3. Further multivariate analyses showed isolated clustering distribution of the metabolites among the four groups, suggesting significant differences in their metabolic characteristics. Through K-means clustering analysis, we identified 235 metabolites that exhibited patterns of abundance change consistent with phenotype of HADA syndrome. Pathway enrichment analysis indicated a high influence of polyunsaturated fatty acids under high-altitude conditions. We compared the metabolites between R3 and r3 and found 107 metabolites with differential abundance involved in lipid metabolism and oxidation, suggesting their potential role in the regulation of oxidative stress homeostasis. Among them, four metabolites might play a key role in the occurrence of HADA, including 11-beta-hydroxyandrosterone-3-glucuronide, 5-methoxyindoleacetate, 9,10-epoxyoctadecenoic acid, and PysoPC (20:5). Conclusion: We observed the dynamic variation in the metabolic process of HADA. Levels of four metabolites, which might be provoking HADA mediated through lipid metabolism and oxidation, were expected to be explore prospective indices for HADA. Additionally, metabolomics was more efficient in identifying environmental risk factors than clinical examination when dramatic metabolic disturbances underlying the difference in symptoms were detected, providing new insights into the molecular mechanisms of HADAS.

2.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968871

RESUMEN

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.

3.
Sci Total Environ ; 947: 174450, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969138

RESUMEN

Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.

4.
Free Radic Biol Med ; 222: 288-303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830513

RESUMEN

Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.

5.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834617

RESUMEN

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Fructosa-Bifosfatasa , Histonas , Queratinocitos , Psoriasis , Animales , Humanos , Ratones , Acetilcoenzima A/metabolismo , Acetilación , Modelos Animales de Enfermedad , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfatasa/genética , Glucólisis , Histonas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones Endogámicos C57BL , Psoriasis/patología , Psoriasis/metabolismo , Psoriasis/genética
6.
Sci Rep ; 14(1): 14114, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898142

RESUMEN

The aim of this study was to develop a simple but effective nomogram to predict risk of septic cardiomyopathy (SCM) in the intensive care unit (ICU). We analyzed data from patients who were first admitted to the ICU for sepsis between 2008 and 2019 in the MIMIC-IV database, with no history of heart disease, and divided them into a training cohort and an internal validation cohort at a 7:3 ratio. SCM is defined as sepsis diagnosed in the absence of other cardiac diseases, with echocardiographic evidence of left (or right) ventricular systolic or diastolic dysfunction and a left ventricular ejection fraction (LVEF) of less than 50%. Variables were selected from the training cohort using the Least Absolute Shrinkage and Selection Operator (LASSO) regression to develop an early predictive model for septic cardiomyopathy. A nomogram was constructed using logistic regression analysis and its receiver operating characteristic (ROC) and calibration were evaluated in two cohorts. A total of 1562 patients participated in this study, with 1094 in the training cohort and 468 in the internal validation cohort. SCM occurred in 13.4% (147 individuals) in the training cohort, 16.0% (75 individuals) in the internal validation cohort. After adjusting for various confounding factors, we constructed a nomogram that includes SAPS II, Troponin T, CK-MB index, white blood cell count, and presence of atrial fibrillation. The area under the curve (AUC) for the training cohort was 0.804 (95% CI 0.764-0.844), and the Hosmer-Lemeshow test showed good calibration of the nomogram (P = 0.288). Our nomogram also exhibited good discriminative ability and calibration in the internal validation cohort. Our nomogram demonstrated good potential in identifying patients at increased risk of SCM in the ICU.


Asunto(s)
Cardiomiopatías , Unidades de Cuidados Intensivos , Nomogramas , Sepsis , Humanos , Masculino , Femenino , Cardiomiopatías/diagnóstico , Persona de Mediana Edad , Sepsis/diagnóstico , Anciano , Curva ROC , Factores de Riesgo , Medición de Riesgo/métodos
7.
J Ethnopharmacol ; 334: 118463, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908493

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.

8.
BMC Gastroenterol ; 24(1): 200, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886630

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD), a chronic inflammatory condition, is caused by several factors involving aberrant immune responses. Genetic factors are crucial in IBD occurrence. Mendelian randomization (MR) can offer a new perspective in understanding IBD's genetic background. METHODS: Single nucleotide polymorphisms (SNPs) were considered instrumental variables (IVs). We analyzed the relationship between 731 immunophenotypes, 1,400 metabolite phenotypes, and IBD. The total effect was decomposed into indirect and direct effects, and the ratio of the indirect effect to the total effect was calculated. RESULTS: We identified the causal effects of HLA-DR-expressing CD14 + monocytes on IBD through MR analysis. The phenotype "HLA-DR expression on CD14 + monocytes" showed the strongest association among the selected 48 immune phenotypes. Chiro-inositol metabolites mediated the effect of CD14 + monocytes expressing HLA-DR on IBD. An increase in Chiro-inositol metabolites was associated with a reduced risk of IBD occurrence, accounting for 4.97%. CONCLUSION: Our findings revealed a new pathway by which HLA-DR-expressing CD14 + monocytes indirectly reduced the risk of IBD occurrence by increasing the levels of Chiro-inositol metabolites. The results provided a new perspective on the immunoregulatory mechanisms underlying IBD, laying a theoretical foundation for developing new therapeutic targets in the future.


Asunto(s)
Antígenos HLA-DR , Enfermedades Inflamatorias del Intestino , Inositol , Receptores de Lipopolisacáridos , Monocitos , Polimorfismo de Nucleótido Simple , Humanos , Monocitos/metabolismo , Monocitos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Inositol/metabolismo , Análisis de la Aleatorización Mendeliana , Fenotipo , Inmunofenotipificación , Femenino , Masculino
9.
Int Immunopharmacol ; 136: 112296, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38810310

RESUMEN

Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 µM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.


Asunto(s)
Acetaminofén , Calgranulina B , Enfermedad Hepática Inducida por Sustancias y Drogas , Flavonoides , Ratones Endogámicos C57BL , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Masculino , Ratones , Calgranulina B/metabolismo , Calgranulina B/genética , Apoptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
10.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622116

RESUMEN

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Asunto(s)
Factor Rho , Factores de Transcripción , Factores de Transcripción/metabolismo , Virulencia/genética , Factor Rho/genética , Factor Rho/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Bacterias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
11.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437887

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Triterpenos , Obstrucción Ureteral , Humanos , Ratones , Animales , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Riñón , Insuficiencia Renal Crónica/metabolismo , Estrés Oxidativo , Fibrosis , Obstrucción Ureteral/metabolismo
12.
Phytomedicine ; 128: 155419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522314

RESUMEN

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Encefalopatía Hepática , Tioacetamida , Vía de Señalización Wnt , Animales , Medicamentos Herbarios Chinos/farmacología , Encefalopatía Hepática/tratamiento farmacológico , Masculino , Vía de Señalización Wnt/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Ratones , Tetracloruro de Carbono , Línea Celular , Ratones Endogámicos C57BL
13.
Heliyon ; 10(3): e24746, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318012

RESUMEN

Objective: Half of the patients with acute large artery occlusion (LAO) have poor outcomes after endovascular treatment (EVT). Early complications such as cerebral edema and symptomatic intracranial hemorrhage (sICH) can lead to early neurological deterioration (END), which correlates with hemodynamics. This study aimed to identify the hemodynamic predictors of END and outcomes in LAO patients after EVT. Methods: A total of 76 patients with anterior circulation LAO who underwent EVT and received transcranial Doppler (TCD) monitoring were included. Bilateral middle cerebral artery (MCA) blood flow velocities (BFVs) were measured repeatedly within 1 week. Mean flow velocities (MFV) and MFV index (ipsilateral MFV/contralateral MFV) were calculated. The primary outcome was the incidence of END within 72 h. The secondary outcome was the functional outcome at 90 days-a good outcome was defined as a modified Rankin scale (mRS) score of 0-2, while a poor outcome was defined as an mRS score of 3-6. Results: A total of 13 patients (17.1 %) experienced END within 72 h, including 5 (38.5 %) with cerebral edema, 5 (38.5 %) with sICH, and 3 (23.0 %) with infarct progression. Multivariable logistic regression analysis showed that a higher 24 h MFV index was independently associated with END (aOR 10.5; 95 % CI 2.28-48.30, p = 0.003) and a poor 90-day outcome (aOR 5.10; 95 % CI 1.38-18.78, p = 0.014). The area under the receiver operating characteristic (ROC) curve (AUC) of the 24 h MFV index for predicting END was 0.807 (95 % CI 0.700-0.915, p = 0.0005), the sensitivity was 84.6 %, and the specificity was 66.7 %. At the 1-week TCD follow-up, patients who had poor 90-day outcomes showed significantly higher 1-week iMFV [73.5 (58.4-99.0) vs. 57.7 (45.3-76.3), p = 0.004] and MFV index [1.24 (0.98-1.57) vs.1.0 (0.87-1.15) p = 0.007]. A persistent high MFV index (PHMI) was independently associated with a poor outcome (aOR 7.77, 95 % CI 1.81-33.3, p = 0.006). Conclusion: TCD monitoring within 24 h after EVT in LAO patients can help predict END, while dynamic follow-up within 1 week is valuable in predicting clinical outcomes.

14.
J Adv Res ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37926144

RESUMEN

INTRODUCTION: Accurate identification of pulmonary arterial hypertension (PAH) in primary care and rural areas can be a challenging task. However, recent advancements in computer vision offer the potential for automated systems to detect PAH from echocardiography. OBJECTIVES: Our aim was to develop a precise and efficient diagnostic model for PAH tailored to the unique requirements of intelligent diagnosis, especially in challenging locales like high-altitude regions. METHODS: We proposed the Chamber Attention Network (CAN) for PAH identification from echocardiographic images, trained on a dataset comprising 13,912 individual subjects. A convolutional neural network (CNN) for view classification was used to select the clinically relevant apical four chamber (A4C) and parasternal long axis (PLAX) views for PAH diagnosis. To assess the importance of different heart chambers in PAH diagnosis, we developed a novel Chamber Attention Module. RESULTS: The experimental results demonstrated that: 1) The substantial correspondence between our obtained chamber attention vector and clinical expertise suggested that our model was highly interpretable, potentially uncovering diagnostic insights overlooked by the clinical community. 2) The proposed CAN model exhibited superior image-level accuracy and faster convergence on the internal validation dataset compared to the other four models. Furthermore, our CAN model outperformed the others on the external test dataset, with image-level accuracies of 82.53% and 83.32% for A4C and PLAX, respectively. 3) Implementation of the voting strategy notably enhanced the positive predictive value (PPV) and negative predictive value (NPV) of individual-level classification results, enhancing the reliability of our classification outcomes. CONCLUSIONS: These findings indicate that CAN is a feasible technique for AI-assisted PAH diagnosis, providing new insights into cardiac structural changes observed in echocardiography.

15.
Front Immunol ; 14: 1254753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954591

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, of which the leading cause of death is cardiovascular disease (CVD). The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) in RA decrease especially under hyperinflammatory conditions. It is conflictive with the increased risk of CVD in RA, which is called "lipid paradox". The systemic inflammation may explain this apparent contradiction. The increased systemic proinflammatory cytokines in RA mainly include interleukin-6(IL-6)、interleukin-1(IL-1)and tumor necrosis factor alpha(TNF-α). The inflammation of RA cause changes in the subcomponents and structure of HDL particles, leading to a weakened anti-atherosclerosis function and promoting LDL oxidation and plaque formation. Dysfunctional HDL can further worsen the abnormalities of LDL metabolism, increasing the risk of cardiovascular disease. However, the specific mechanisms underlying lipid changes in RA and increased CVD risk remain unclear. Therefore, this article comprehensively integrates the latest existing literature to describe the unique lipid profile of RA, explore the mechanisms of lipid changes, and investigate the impact of lipid changes on cardiovascular disease.


Asunto(s)
Artritis Reumatoide , Enfermedades Cardiovasculares , Dislipidemias , Humanos , Enfermedades Cardiovasculares/etiología , Inflamación , LDL-Colesterol , Factor de Necrosis Tumoral alfa/metabolismo
16.
Front Immunol ; 14: 1258765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022540

RESUMEN

Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.


Asunto(s)
Artritis Reumatoide , Transducción de Señal , Humanos , Oncostatina M , Transducción de Señal/fisiología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Quinasas Janus/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
17.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3772-3786, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37805853

RESUMEN

Dorsal root ganglia (DRG) is an essential part of the peripheral nervous system and the hub of the peripheral sensory afferent. The dynamic changes of neuronal cells and their gene expression during the development of dorsal root ganglion have been studied through single-cell RNAseq analysis, while the dynamic changes of non-neuronal cells have not been systematically studied. Using single cell RNA sequencing technology, we conducted a research on the non-neuronal cells in the dorsal root ganglia of rats at different developmental stage. In this study, primary cell suspension was obtained from using the dorsal root ganglions (DRGs, L4-L5) of ten 7-day-old rats and three 3-month-old rats. The 10×Genomics platform was used for single cell dissociation and RNA sequencing. Twenty cell subsets were acquired through cluster dimension reduction analysis, and the marker genes of different types of cells in DRG were identified according to previous researches about DRG single cell transcriptome sequencing. In order to find out the non-neuronal cell subsets with significant differences at different development stage, the cells were classified into different cell types according to markers collected from previous researches. We performed pseudotime analysis of 4 types Schwann cells. It was found that subtype Ⅱ Schwann cells emerged firstly, and then were subtype Ⅲ Schwann cells and subtype Ⅳ Schwann cells, while subtype Ⅰ Schwann cells existed during the whole development procedure. Pseudotime analysis indicated the essential genes influencing cell fate of different subtypes of Schwann cell in DRG, such as Ntrk2 and Pmp2, which affected cell fate of Schwann cells during the development period. GO analysis of differential expressed genes showed that the up-regulated genes, such as Cst3 and Spp1, were closely related to biological process of tissue homeostasis and multi-multicellular organism process. The down regulated key genes, such as Col3a1 and Col4a1, had close relationship with the progress of extracellular structure organization and negative regulation of cell adhesion. This suggested that the expression of genes enhancing cell homestasis increased, while the expression of related genes regulating ECM-receptor interaction pathway decreased during the development. The discovery provided valuable information and brand-new perspectives for the study on the physical and developmental mechanism of Schwann cell as well as the non-neuronal cell changes in DRG at different developmental stage. The differential gene expression results provided crucial references for the mechanism of somatosensory maturation during development.


Asunto(s)
Ganglios Espinales , Transcriptoma , Ratas , Animales , Ganglios Espinales/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Células de Schwann/fisiología
18.
Hum Vaccin Immunother ; 19(2): 2240689, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529904

RESUMEN

Immune-related adverse events (irAEs) pose a significant challenge for the widespread adoption of immuno-oncology therapies, but their symptoms can vary widely. In particular, the relationship between irAEs and pleural effusion (PE) in patients with advanced non-small cell lung cancer (NSCLC) remains unclear. In this report, we present the case of an advanced NSCLC patient who developed persistent PE despite receiving camrelizumab (an anti-programmed death receptor 1 [PD-1] antibody) and chemotherapy as first-line treatment. While the patient's tumor biomarkers decreased after multiple cycles of treatment, the PE persisted despite negative findings on cytology and pleural biopsy. Additionally, the use of anti-angiogenic drugs failed to alleviate the PE. Screening for rheumatic connective tissue markers and tuberculosis yielded negative results, but intrathoracic dexamethasone injections in two doses resulted in a significant reduction of the PE. This case suggests that PE may represent a rare type of irAE that should be monitored for during prolonged immuno-oncology therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Derrame Pleural , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Derrame Pleural/inducido químicamente , Derrame Pleural/tratamiento farmacológico , Inmunoterapia/efectos adversos
19.
Biomed Pharmacother ; 166: 115322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586115

RESUMEN

Fructus psoraleae (FP) is a commonly used herb with potential reproductive toxicity. Bavachin (BV), one of essential active ingredients of FP, was found to exhibit estrogenic activity, but its effect on female reproductive system remains unknown. In this study, the impact of BV on the female zebrafish reproductive system and underlying molecular mechanism were determined in vivo and ex vivo. The results showed that BV could accumulate in zebrafish ovary, leading to obvious follicular atresia and increase in gonadal index and vitellogenin content. Endoplasmic reticulum (ER) swelling and hypertrophy were observed in the BV-treated zebrafish ovary, accompanied by an increase in the expressions of ER stress and unfolded protein response (UPR) related genes, namely atf6, ire-1α and xbp1s. In the ex vivo study, BV was found to decrease the survival rate and maturation rate of oocytes, while increasing the expression of Ca2+. Additionally, BV led to an elevation in the level of estrogen receptor ESR1 and the expressions of genes involved in ER stress and UPR, including atf6, ire-1α, xbp1s, chop and perk. Moreover, molecular docking revealed that BV could directly bind to immunoglobulin heavy chain binding protein (BiP) and estrogen receptor 1 (ESR1). Besides, the alterations induced by BV could be partially reversed by fulvestrant (FULV) and 4-phenylbutyric acid (4-PBA), respectively. Thus, long-termed BV-containing medicine treatment could generate reproductive toxicity in female zebrafish by causing follicular atresia through BiP- and ESR-mediated ER stress and UPR, providing a potential target for the prevention of reproductive toxicity caused by BV.


Asunto(s)
Ovario , Pez Cebra , Femenino , Animales , Atresia Folicular , Simulación del Acoplamiento Molecular , Transducción de Señal , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Apoptosis
20.
J Pharm Anal ; 13(7): 806-816, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577386

RESUMEN

Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...