Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(4): 453-465.e6, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38513655

RESUMEN

The plant homolog of vertebrate necroptosis inducer mixed-lineage kinase domain-like (MLKL) contributes to downstream steps in Toll-interleukin-1 receptor domain NLR (TNL)-receptor-triggered immunity. Here, we show that Arabidopsis MLKL1 (AtMLKL1) clusters into puncta at the plasma membrane upon TNL activation and that this sub-cellular reorganization is dependent on the TNL signal transducer, EDS1. We find that AtMLKLs confer TNL-triggered immunity in parallel with RPW8-type HeLo-domain-containing NLRs (RNLs) and that the AtMLKL N-terminal HeLo domain is indispensable for both immunity and clustering. We show that the AtMLKL HeLo domain mediates cytoplasmic Ca2+ ([Ca2+]cyt) influx in plant and human cells, and AtMLKLs are responsible for sustained [Ca2+]cyt influx during TNL-triggered, but not CNL-triggered, immunity. Our study reveals parallel immune signaling functions of plant MLKLs and RNLs as mediators of [Ca2+]cyt influx and a potentially common role of the HeLo domain fold in the Ca2+-signal relay of diverse organisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Unión al ADN/genética , Inmunidad de la Planta/fisiología , Plantas Modificadas Genéticamente , Enfermedades de las Plantas , Proteínas Quinasas/metabolismo
2.
Nature ; 627(8005): 847-853, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480885

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Asunto(s)
Adenosina Trifosfato , Arabidopsis , NAD , Nicotiana , Separación de Fases , Proteínas de Plantas , Dominios Proteicos , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Mutación , NAD/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos/genética , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Receptores Toll-Like/química , Receptores de Interleucina-1/química
3.
BMC Plant Biol ; 22(1): 363, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869432

RESUMEN

BACKGROUND: Sugarcane is an important crop for sugar production worldwide. The Sugars Will Eventually be Exported Transporters (SWEETs) are a group of sugar transporters recently identified in sugarcane. In Saccharum spontaneum, SsSWEET13c played a role in the sucrose transportation from the source to the sink tissues, which was found to be mainly active in the mature leaf. However, the function and regulation of SWEETs in sugarcane remain elusive despite extensive studies performed on sugar metabolism. RESULTS: In this study, we showed that SsSWEET13c is a member of SWEET gene family in S. spontaneum, constituting highest circadian rhythm-dependent expression. It is a functional gene that facilitates plant root elongation and increase fresh weight of Arabidopsis thaliana, when overexpressed. Furthermore, yeast one-hybrid assays indicate that 20 potential transcription factors (TFs) could bind to the SsSWEET13c promoter in S. spontaneum. We combined transcriptome data from developmental gradient leaf with distinct times during circadian cycles and stems/leaves at different growth stages. We have uncovered that 14 out of 20 TFs exhibited positive/negative gene expression patterns relative to SsSWEET13c. In the source tissues, SsSWEET13c was mainly positively regulated by SsbHLH34, SsTFIIIA-a, SsMYR2, SsRAP2.4 and SsbHLH035, while negatively regulated by SsABS5, SsTFIIIA-b and SsERF4. During the circadian rhythm, it was noticed that SsSWEET13c was more active in the morning than in the afternoon. It was likely due to the high level of sugar accumulation at night, which was negatively regulated by SsbZIP44, and positively regulated by SsbHLH34. Furthermore, in the sink tissues, SsSWEET13c was also active for sugar accumulation, which was positively regulated by SsbZIP44, SsTFIIIA-b, SsbHLH34 and SsTFIIIA-a, and negatively regulated by SsERF4, SsHB36, SsDEL1 and SsABS5. Our results were further supported by one-to-one yeast hybridization assay which verified that 12 potential TFs could bind to the promoter of SsSWEET13c. CONCLUSIONS: A module of the regulatory network was proposed for the SsSWEET13c in the developmental gradient of leaf and circadian rhythm in S. spontaneum. These results provide a novel understanding of the function and regulation of SWEET13c during the sugar transport and biomass production in S. spontaneum.


Asunto(s)
Saccharum , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Saccharomyces cerevisiae/genética , Saccharum/genética , Saccharum/metabolismo , Azúcares/metabolismo , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 117(47): 29775-29785, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33139555

RESUMEN

Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.


Asunto(s)
Domesticación , Evolución Molecular , Carpa Dorada/genética , Selección Artificial/genética , Animales , Mapeo Contig , Conjuntos de Datos como Asunto , Femenino , Proteínas de Peces/genética , Variación Genética , Genoma/genética , Genómica , Hibridación Genética , Masculino , Modelos Animales , Filogenia , Proteínas Tirosina Quinasas/genética
5.
BMC Plant Biol ; 18(1): 270, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404601

RESUMEN

BACKGROUND: The SWEET (Sugars Will Eventually be Exported Transporters) gene family is a recently identified group of sugar transporters that play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction, nectar secretion, and reproductive tissue development. However, little information on Saccharum SWEET is available for this crop with a complex genetic background. RESULTS: In this study, 22 SWEET genes were identified from Saccharum spontaneum Bacterial Artificial Chromosome libraries sequences. Phylogenetic analyses of SWEETs from 11 representative plant species showed that gene expansions of the SWEET family were mainly caused by the recent gene duplication in dicot plants, while these gene expansions were attributed to the ancient whole genome duplication (WGD) in monocot plant species. Gene expression profiles were obtained from RNA-seq analysis. SWEET1a and SWEET2s had higher expression levels in the transitional zone and maturing zone than in the other analyzed zones. SWEET1b was mainly expressed in the leaf tissues and the mature zone of the leaf of both S. spontaneum and S. officinarum, and displayed a peak in the morning and was undetectable in both sclerenchyma and parenchyma cells from the mature stalks of S. officinarum. SsSWEET4a\4b had higher expression levels than SWEET4c and were mainly expressed in the stems of seedlings and mature plants. SWEET13s are recently duplicated genes, and the expression of SWEET13s dramatically increased from the maturing to mature zones. SWEET16b's expression was not detected in S. officinarum, but displayed a rhythmic diurnal expression pattern. CONCLUSIONS: Our study revealed the gene evolutionary history of SWEETs in Saccharum and SWEET1b was found to be a sucrose starvation-induced gene involved in the sugar transportation in the high photosynthetic zones. SWEET13c was identified as the key player in the efflux of sugar transportation in mature photosynthetic tissues. SWEET4a\4b were found to be mainly involved in sugar transportation in the stalk. SWEET1a\2a\4a\4b\13a\16b were suggested to be the genes contributing to the differences in sugar contents between S. spontaneum and S. officinarum. Our results are valuable for further functional analysis of SWEET genes and utilization of the SWEET genes for genetic improvement of Saccharum for biofuel production.


Asunto(s)
Saccharum/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Haplotipos/genética , Filogenia , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA