Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268748

RESUMEN

BACKGROUND: This study aimed to explore how interactions between reactive oxygen species (ROS) and reactive nitrogen species (RNS) affect oxidative properties, nitrosative properties, and myofibrillar protein degradation during postmortem aging of yak meat. RESULTS: Yak longissimus dorsi was incubated with saline, ROS activator (H2O2)/inhibitor N-Acetyl-L-cysteine (NAC) and RNS activator S-Nitrosoglutathione (GSNO)/inhibitor L-NAME hydrochloride (L-NAME) combined treatments at 4 °C for 12, 24, 72, 120, and 168 h. The results indicated that regardless of whether RNS was activated or inhibited, activated ROS played a dominant role in myofibrillar protein degradation by oxidative modification to increase carbonyl content, disulfide bonds, surface hydrophobicity, and dimerized tyrosine while decreasing sulfhydryl content, thereby degrading nebulin, titin, troponin-t and desmin. Notably, the Warner-Bratzler shear force (WBSF) of the H2O2 + L-NAME group was the smallest, whereas that of the NAC + GSNO group was smaller than that of the NAC + L-NAME group. CONCLUSION: These findings provide new insights into meat tenderization patterns through the interaction between ROS and RNS. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 277(Pt 1): 133596, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38960269

RESUMEN

In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.


Asunto(s)
Geles , Albúmina Sérica Bovina , Xilanos , Albúmina Sérica Bovina/química , Xilanos/química , Geles/química , Animales , Bovinos , Gluconatos/química , Lactonas/química , Agua/química , Sales (Química)/química , Iones/química , Calcio/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
3.
Food Res Int ; 191: 114717, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059914

RESUMEN

To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.


Asunto(s)
Apoptosis , Peróxido de Hidrógeno , Estrés Oxidativo , Animales , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Bovinos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Óxido Nítrico/metabolismo , Carne/análisis , Cambios Post Mortem , Especies Reactivas de Oxígeno/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología
4.
Foods ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38790806

RESUMEN

The aim of this study is to produce a biodegradable food packaging material that reduces environmental pollution and protects food safety. The effects of total solids content, substrate ratio, polyphenol content, and magnetic stirring time on bovine bone gelatin/sodium carboxymethylcellulose nanoemulsion (BBG/SCMC-NE) were investigated using particle size, PDI, turbidity, rheological properties, and zeta potential as evaluation indexes. The micro, structural, antioxidant, encapsulation, and release properties were characterized after deriving its optimal preparation process. The results showed that the nanoemulsion was optimally prepared with a total solids content of 2%, a substrate ratio of 9:1, a polyphenol content of 0.2%, and a magnetic stirring time of 60 min. SEM showed that the nanoemulsion showed a dense and uniform reticulated structure. FTIR and XRD results showed that covalent cross-linking of proteins and polysaccharides altered the structure of gelatin molecular chains to a more compact form but did not change its semi-crystalline structure. DSC showed that the 9:1 BBG/SCMC-NE had a higher thermal denaturation temperature and greater thermal stability, and its DPPH scavenging rate could reach 79.25% and encapsulation rate up to 90.88%, with excellent slow-release performance. The results of the study provide basic guidance for the preparation of stable active food packaging with excellent properties.

5.
Foods ; 13(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38472845

RESUMEN

In order to improve the stability of bovine plasma protein-carboxymethyl cellulose composite gels and to expand the utilization of animal by-product resources, this study investigated the impact of different ultrasound powers (300, 400, 500, 600, and 700 W) and ultrasound times (0, 10, 20, 30, and 40 min) on the functional properties, secondary structure and intermolecular forces of bovine plasma protein-carboxymethyl cellulose composite gel. The results showed that moderate ultrasonication resulted in the enhancement of gel strength, water holding capacity and thermal stability of the composite gels, the disruption of hydrogen bonding and hydrophobic interactions between gel molecules, the alteration and unfolding of the internal structure of the gels, and the stabilization of the dispersion state by electrostatic repulsive forces between the protein particles. The content of α-helices, ß-turns, and ß-sheets increased and the content of random curls decreased after sonication (p < 0.05). In summary, appropriate ultrasound power and time can significantly improve the functional and structural properties of composite gels. It was found that controlling the thermal aggregation behavior of composite gels by adjusting the ultrasonic power and time is an effective strategy to enable the optimization of composite gel texture and water retention properties.

6.
Foods ; 12(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628091

RESUMEN

Beef skin gelatin can be used as a good substitute for animal fat in meat patties. In this paper, the effect of different parameters on low-fat beef patties with cowhide gelatin substituted for beef fat (0, 25%, 50%, 75%, 100%) prepared by ultra-high pressure assisted technology was investigated by texture, cooking loss, and sensory scores. The beef patties were also stored at 0-4 °C for 0, 7, 14, 21, and 28 d. The differences and changing rules of fatty acid and amino acid compositions and contents of beef patties with different fat contents were investigated by simulating gastrointestinal digestion in vitro. The optimal process formulation of low-fat beef patties with cowhide gelatin was determined by experimental optimization as follows: ultra-high pressure 360 MPa, ultra-high of pressure time of 21 min, NaCl addition of 1.5%, compound phosphate addition of 0.3%. The addition of cowhide gelatin significantly increased monounsaturated fatty acids, polyunsaturated fatty acids, amino acid content, and protein digestibility of beef patties (p < 0.05). Moreover, with the extension of storage time, the content of saturated fatty acids was significantly higher (p < 0.05), the content of monounsaturated and polyunsaturated fatty acids was significantly lower (p < 0.05), the content of amino acids was significantly lower (p < 0.05), and protein digestibility was significantly lower (p < 0.05) under all substitution ratios. Overall, beef patties with 75% and 100% substitution ratios had better digestibility characteristics. The results of this study provide a theoretical basis for gelatin's potential as a fat substitute for beef patties and for improving the quality of low-fat meat products.

7.
Foods ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509781

RESUMEN

In this study, fuzzy mathematics and response surface modeling were applied to optimize the preparation process of beef liver paste and characterize the proximate composition, sensory and physicochemical qualities, and in vitro simulated digestive properties while refrigerated at 0-4 °C (0, 3, 7, 15, 30, 45, and 60 days). The results showed that the optimal preparation process was 4.8% potato starch, 99.4% water, 10.2% olive oil, and a 3:2 ratio of chicken breast and beef liver. The beef liver paste prepared contained essential amino acids for infants and children, with a protein content of 10.29 g/100 g. During storage, the pH of the beef liver paste decreased significantly (p < 0.05) on day 7, texture and rheological properties decreased significantly after 30 days, a* values increased, L* and b* values gradually decreased, and TVB-N and TBARS values increased significantly (p < 0.05) on day 7 but were below the limit values during the storage period (TVB-N value ≤ 15 mg/100 g, TBARS value ≤ 1 mg/Kg). In vitro simulated digestion tests showed better digestibility and digestive characteristics in the first 15 days. The results of this study provide a reference for the development of beef liver products for infant and child supplementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA