Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 13(5): 1626-35, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27012934

RESUMEN

Pulmonary delivery has great potential for delivering biologics to the lung if the challenges of maintaining activity, stability, and ideal aerosol characteristics can be overcome. To study the interactions of a biologic in the lung, we chose butyrylcholinesterase (BuChE) as our model enzyme, which has application for use as a bioscavenger protecting against organophosphate exposure or for use with pseudocholinesterase deficient patients. In mice, orotracheal administration of free BuChE resulted in 72 h detection in the lungs and 48 h in the broncheoalveolar lavage fluid (BALF). Free BuChE administered to the lung of all mouse backgrounds (Nude, C57BL/6, and BALB/c) showed evidence of an acute cytokine (IL-6, TNF-α, MIP2, and KC) and cellular immune response that subsided within 48 h, indicating relatively safe administration of this non-native biologic. We then developed a formulation of BuChE using Particle Replication in Non-Wetting Templates (PRINT). Aerosol characterization demonstrated biologically active BuChE 1 µm cylindrical particles with a mass median aerodynamic diameter of 2.77 µm, indicative of promising airway deposition via dry powder inhalers (DPI). Furthermore, particulate BuChE delivered via dry powder insufflation showed residence time of 48 h in the lungs and BALF. The in vivo residence time, immune response, and safety of particulate BuChE delivered via a pulmonary route, along with the cascade impaction distribution of dry powder PRINT BuChE, showed promise in the ability to deliver active enzymes with ideal deposition characteristics. These findings provide evidence for the feasibility of optimizing the use of BuChE in the clinic; PRINT BuChE particles can be readily formulated for use in DPIs, providing a convenient and effective treatment option.


Asunto(s)
Aerosoles/administración & dosificación , Butirilcolinesterasa/administración & dosificación , Pulmón/efectos de los fármacos , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Química Farmacéutica/métodos , Quimiocina CXCL2/metabolismo , Inhaladores de Polvo Seco/métodos , Interleucina-6/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Tamaño de la Partícula , Polvos/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
2.
ACS Nano ; 10(1): 861-70, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26592524

RESUMEN

Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.


Asunto(s)
Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Neoplasias Pulmonares/inmunología , Pulmón/inmunología , Nanopartículas/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Cisplatino/farmacología , Composición de Medicamentos , Oído/anatomía & histología , Oído/irrigación sanguínea , Humanos , Hidrogeles/química , Inmunidad Innata , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Nanopartículas/química , Trasplante de Neoplasias , Cultivo Primario de Células , Bazo/efectos de los fármacos , Bazo/metabolismo , Imagen de Lapso de Tiempo
3.
Nanomedicine ; 12(3): 677-687, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26656533

RESUMEN

Engineered nanoparticles have the potential to expand the breadth of pulmonary therapeutics, especially as respiratory vaccines. Notably, cationic nanoparticles have been demonstrated to produce superior local immune responses following pulmonary delivery; however, the cellular mechanisms of this increased response remain unknown. To this end, we investigated the cellular response of lung APCs following pulmonary instillation of anionic and cationic charged nanoparticles. While nanoparticles of both surface charges were capable of trafficking to the draining lymph node and were readily internalized by alveolar macrophages, both CD11b and CD103 lung dendritic cell (DC) subtypes preferentially associated with cationic nanoparticles. Instillation of cationic nanoparticles resulted in the upregulation of Ccl2 and Cxc10, which likely contributes to the recruitment of CD11b DCs to the lung. In total, these cellular mechanisms explain the increased efficacy of cationic formulations as a pulmonary vaccine carrier and provide critical benchmarks in the design of pulmonary vaccine nanoparticles. FROM THE CLINICAL EDITOR: Advance in nanotechnology has allowed the production of precise nanoparticles as vaccines. In this regard, pulmonary delivery has the most potential. In this article, the authors investigated the interaction of nanoparticles with various types of lung antigen presenting cells in an attempt to understand the cellular mechanisms. The findings would further help the future design of much improved vaccines for clinical use.


Asunto(s)
Células Dendríticas/metabolismo , Iones/química , Iones/farmacocinética , Pulmón/metabolismo , Ganglios Linfáticos/metabolismo , Nanopartículas/química , Vacunas/administración & dosificación , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Femenino , Humanos , Iones/administración & dosificación , Iones/metabolismo , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Propiedades de Superficie
4.
Pharm Res ; 32(10): 3248-60, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26002743

RESUMEN

PURPOSE: We evaluated the role of a poly(ethylene glycol) (PEG) surface coating to increase residence times and alter the cellular fate of nano- and microparticles delivered to the lung. METHODS: Three sizes of PRINT hydrogel particles (80 × 320 nm, 1.5 and 6 µm donuts) with and without a surface PEG coating were instilled in the airways of C57/b6 mice. At time points of 1, 7, and 28 days, BALF and whole lungs were evaluated for the inflammatory cytokine Il-6 and chemokine MIP-2, histopathology, cellular populations of macrophages, dendritic cells (DCs), and granulocytes, and particulate uptake within these cells through flow cytometry, ELISAs, and fluorescent imaging. RESULTS: Particles of all sizes and surface chemistries were readily observed in the lung with minimal inflammatory response at all time points. Surface modification with PEGylation was found to significantly increase lung residence times and homogeneous lung distribution, delaying macrophage clearance of all sizes, with the largest increase in residence time observed for 80 × 320 nm particles. Additionally, it was observed that DCs were recruited to the airway following administration of unPEGylated particles and preferentially associated with these particles. CONCLUSIONS: Pulmonary drug delivery vehicles designed with a PEG surface coating can be used to delay particle uptake and promote cell-specific targeting of therapeutics.


Asunto(s)
Pulmón/metabolismo , Polietilenglicoles/metabolismo , Polímeros/metabolismo , Animales , Línea Celular , Quimiocina CXCL2/metabolismo , Células Dendríticas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Femenino , Granulocitos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas/metabolismo , Tamaño de la Partícula
5.
Proc Natl Acad Sci U S A ; 112(2): 488-93, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548169

RESUMEN

Pulmonary immunization enhances local humoral and cell-mediated mucosal protection, which are critical for vaccination against lung-specific pathogens such as influenza or tuberculosis. A variety of nanoparticle (NP) formulations have been tested preclinically for pulmonary vaccine development, yet the role of NP surface charge on downstream immune responses remains poorly understood. We used the Particle Replication in Non-Wetting Templates (PRINT) process to synthesize hydrogel NPs that varied only in surface charge and otherwise maintained constant size, shape, and antigen loading. Pulmonary immunization with ovalbumin (OVA)-conjugated cationic NPs led to enhanced systemic and lung antibody titers compared with anionic NPs. Increased antibody production correlated with robust germinal center B-cell expansion and increased activated CD4(+) T-cell populations in lung draining lymph nodes. Ex vivo treatment of dendritic cells (DCs) with OVA-conjugated cationic NPs induced robust antigen-specific T-cell proliferation with ∼ 100-fold more potency than soluble OVA alone. Enhanced T-cell expansion correlated with increased expression of surface MHCII, T-cell coactivating receptors, and key cytokines/chemokine expression by DCs treated with cationic NPs, which were not observed with anionic NPs or soluble OVA. Together, these studies highlight the importance of NP surface charge when designing pulmonary vaccines, and our findings support the notion that cationic NP platforms engender potent humoral and mucosal immune responses.


Asunto(s)
Inmunización/métodos , Pulmón/inmunología , Nanopartículas/administración & dosificación , Nanopartículas/química , Animales , Formación de Anticuerpos , Antígenos/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Células Dendríticas/inmunología , Hidrogeles/administración & dosificación , Hidrogeles/química , Inmunidad Mucosa , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Electricidad Estática , Propiedades de Superficie , Receptores Toll-Like/metabolismo , Vacunas de Subunidad/administración & dosificación
6.
Bioconjug Chem ; 19(1): 377-84, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18062659

RESUMEN

Nonviral gene carriers must associate with and become internalized by cells in order to mediate efficient transfection. Methods to quantitatively measure and distinguish between cell association and internalization of delivery vectors are necessary to characterize the trafficking of vector formulations. Here, we demonstrate the utility of nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled oligonucleotides for discrimination between bound and internalized gene carriers associated with cells. Dithionite quenches the fluorescence of extracellular NBD-labeled material, but is unable to penetrate the cell membrane and quench internalized material. We have verified that dithionite-mediated quenching of extracellular materials occurs in both polymer- and lipid-based gene delivery systems incorporating NBD-labeled oligonucleotides. By exploiting this property, the efficiencies of cellular binding and internalization of lipid- and polymer-based vectors were studied and correlated to their transfection efficiencies. Additionally, spatiotemporal information regarding binding and internalization of NBD-labeled gene carriers can be obtained using conventional wide-field fluorescence microscopy, since dithionite-mediated quenching of extracellular materials reveals the intracellular distribution of gene carriers without the need for optical sectioning. Hence, incorporation of environmentally sensitive NBD-oligos into gene carriers allows for facile assessment of binding and internalization efficiencies of vectors in live cells.


Asunto(s)
Colorantes Fluorescentes/análisis , Transfección/métodos , Ditionita/química , Ambiente , Citometría de Flujo , Fluorescencia , Células HeLa , Humanos , Neuronas/citología , Neuronas/metabolismo , Oligonucleótidos/metabolismo , Oxadiazoles/química , Oxadiazoles/metabolismo , Oxidación-Reducción , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo , Xantenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...