Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Front Plant Sci ; 15: 1353352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689842

RESUMEN

Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.

2.
Bioresour Technol ; 402: 130827, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734258

RESUMEN

In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.


Asunto(s)
Biodegradación Ambiental , Ecosistema , Nitrógeno , Oligoquetos , Fósforo , Animales , Oligoquetos/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Contaminantes Químicos del Agua , Lluvia
3.
Research (Wash D C) ; 7: 0347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576863

RESUMEN

Utilizing renewable lignocellulosic resources for wastewater remediation is crucial to achieving sustainable social development. However, the resulting by-products and the synthetic process characterized by complexity, high cost, and environmental pollution limit the further development of lignocellulose-based materials. Here, we developed a sustainable strategy that involved a new functional deep eutectic solvent (DES) to deconstruct industrial xylose residue into cellulose-rich residue with carboxyl groups, lignin with carboxyl and quaternary ammonium salt groups, and DES effluent rich in lignin fragments. Subsequently, these fractions equipped with customized functionality were used to produce efficient wastewater remediation materials in cost-effective and environmentally sound manners, namely, photocatalyst prepared by carboxyl-modified cellulose residue, biochar-based adsorbent originated from modified lignin, and flocculant synthesized by self-catalytic in situ copolymerization of residual DES effluent at room temperature. Under the no-waste principle, this strategy upgraded the whole components of waste lignocellulose into high-value-added wastewater remediation materials with excellent universality. These materials in coordination with each other can stepwise purify high-hazardous mineral processing wastewater into drinkable water, including the removal of 99.81% of suspended solids, almost all various heavy metal ions, and 97.09% chemical oxygen demand, respectively. This work provided promising solutions and blueprints for lignocellulosic resources to alleviate water shortages while also advancing the global goal of carbon neutrality.

4.
Adv Mater ; : e2307825, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489562

RESUMEN

Additive manufacturing (AM) facilitates the creation of materials with unique microstructural features and distinctive phenomena as compared to conventional manufacturing methods. Among the various well-fabricated AM alloys, aluminum alloys garner substantial attention due to their extensive applications in the automotive and aerospace industries. In this work, an Al6xxx alloy is successfully fabricated with outstanding performance. A nucleation agent is introduced to diminish the susceptibility to cracking during the AM process, thereby inducing a heterogeneous microstructure in this alloy. However, the introduction of ultrafine grains induces plastic instability, evidenced by the presence of Lüders band. This work investigates the evolution of the Lüders band and the strategy to reduce their undesirable effect. The heterogeneity destabilizes the band propagation and thus deteriorates the ductility. Through a T6 heat treatment, the local Lüders strain decreases from 10.0% to 6.2%, leading to a substantial enhancement in plastic stability. With the increase in grain growth and the enlargement of coarse grain regions, the mismatch between the local and macroscopic Lüders strain disappears. Importantly, the strength and the thermal conductivity are concurrently increased. The findings demonstrate the significance of ensuring plastic stability to achieve improved strength-ductility trade-off in AM alloys with heterogeneous microstructures.

5.
STAR Protoc ; 5(1): 102871, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310511

RESUMEN

Phenolic chemicals are important building blocks in chemical and material industries. In this protocol, we describe the preparation of CeO2-CuO catalysts and the application in the decarboxylative oxidation reaction of benzoic acids to phenols. Furthermore, we describe how to modify the basic sites of CeO2-CuO catalysts by CO2 treatment to increase the selectivity of phenol and the regeneration process of used catalyst. For complete details on the use and execution of this protocol, please refer to Du et al. (2023).1.


Asunto(s)
Benzoatos , Fenoles , Cobre , Oxidación-Reducción , Fenol
6.
Plants (Basel) ; 13(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38202452

RESUMEN

The aim of this study was to investigate the impact of water and nitrogen regulation on the characteristics of water and fertilizer demands and the yield, quality, and efficiencies of the water and nitrogen utilization of peanuts cultivated under mulched drip irrigation in a desert-oasis region. The experiment, conducted in Urumqi, Xinjiang, centered on elucidating the response mechanisms governing peanut growth, yield, quality, water consumption patterns, and fertilizer characteristics during the reproductive period under the influence of water and nitrogen regulation. In the field experiments, three irrigation levels were implemented, denoted as W1 (irrigation water quota of 22.5 mm), W2 (irrigation water quota of 30 mm), and W3 (irrigation water quota of 37.5 mm). Additionally, two nitrogen application levels, labeled N1 (nitrogen application rate of 77.5 kg·ha-1) and N2 (a nitrogen application rate of 110 kg·ha-1), were applied, resulting in seven treatments. A control treatment (CK), which involved no nitrogen application, was also included in the experimental design. The results indicate a direct correlation between the increment in the irrigation quota and increases in farmland water-related parameters, including water consumption, daily water consumption intensity, and water consumption percentage. The nitrogen harvest index (NHI) demonstrated a higher value in the absence of nitrogen application compared to the treatment with elevated nitrogen levels. The application of nitrogen resulted in an elevation in both nitrogen accumulation and nitrogen absorption efficiency within pods and plants. When subjected to identical nitrogen application conditions, irrigation proved to be advantageous in enhancing water-use efficiency (WUE), nitrogen partial factor productivity (NPFP), and the yield of peanut pods. The contribution rate of water to pod yield and WUE exceeded that of nitrogen, while the contribution rate of nitrogen to nitrogen-use efficiency (NUE) was higher. The total water consumption for achieving a high yield and enhanced water- and nitrogen-use efficiencies in peanuts cultivated under drip irrigation with film mulching was approximately 402.57 mm. Taking into account yield, quality, and water- and nitrogen-used efficiencies, the use of an irrigation quota of 37.5 mm, an irrigation cycle of 10-15 days, and a nitrogen application rate of 110 kg·ha-1 can be regarded as an appropriate water and nitrogen management approach for peanut cultivation under mulched drip irrigation in Xinjiang.

7.
Food Funct ; 15(1): 295-309, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38084034

RESUMEN

Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1ß, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.


Asunto(s)
Microbioma Gastrointestinal , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal
8.
Food Chem ; 439: 138035, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039614

RESUMEN

Ceratocystis paradoxa is a major cause of postharvest disease in tender coconuts worldwide. We conducted a comprehensive study using widely targeted metabolomics, electronic tongue (E-tongue), and electronic nose (E-nose) analyses to investigate the impacts of C. paradoxa invasion on the quality of tender coconut water (TCW) from fresh control (FC), uninoculated (UN), skin-inoculated (SI), and deep-inoculated (DI) nuts. DI exhibited significantly higher taste indicators associated with bitterness, saltiness, astringency aftertaste, and bitter aftertaste, as well as odor sensor values related to various compounds such as long-chain alkanes, hydrides, methane, organic sulfides, etc. Invasion of C. paradoxa into the endosperm altered the flavor characteristics of TCW mainly through the modulation of carbohydrate and secondary metabolite pathways. Furthermore, significant correlations were observed between the differentially expressed flavorful metabolites and the sensor indicators of the E-nose and E-tongue. These findings offer valuable insights into understanding the impact of C. paradoxa infection on coconuts.


Asunto(s)
Cocos , Nariz Electrónica , Odorantes , Gusto , Lengua
9.
Plants (Basel) ; 12(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37836108

RESUMEN

The optimization of irrigation and fertilization indexes for peanuts with drip irrigation is urgently needed in Xinjiang. A field experiment was conducted during the 2021 peanut growing season at Urumqi, Xinjiang, in Northwestern China, to evaluate the effects of different water and nitrogen treatments on the growth, yield, and water and nitrogen utilization of peanuts. In field experiments, we set up three irrigation levels (irrigation water quotas of 22.5, 30, and 37.5 mm, respectively, for W1, W2, and W3), two nitrogen application levels (77.5 and 110 kg·ha-1, recorded as N1 and N2), and a control treatment (W2N0) that did not include the application of nitrogen. The results showed that nitrogen application enhanced the growth, physiological indexes, yield, and water use efficiency of the W1, W2, and W3 treatments when the irrigation volume remained the same. In comparison with no nitrogen application (W2N0), the peanut growth, physiological indexes, yield, and water use efficiency improved with increasing irrigation amounts in the N1 and N2 treatments. With an increase in the irrigation volume, the water use efficiency grew; the W3N2 treatment had the highest water use efficiency, which was 1.32 kg·m-3. The total water consumption and reproductive-stage water consumption of the peanuts in all treatments increased with the irrigation volume, and a high yield was achieved at 402.57 mm, which was 5.2974 Mg·ha-1. In the W1, W2, and W3 treatments, the nitrogen partial factor productivity significantly decreased as the nitrogen application increased, with the nitrogen partial factor productivity in the W3N1 treatment being the highest, at 60.61 kg·kg-1. A comprehensive evaluation based on principal component analysis assigned W3N2 the higher score. These findings suggest that irrigation water quotas of 37.5 mm should be coupled with 110 kg·ha-1 nitrogen applications for peanuts using drip irrigation in mulch film in Xinjiang.

12.
iScience ; 26(8): 107460, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37593461

RESUMEN

Phenols are important building blocks widely applied in many fields. The pronounced orientational effect of the phenolic hydroxyl group makes achieving selective synthesis of meta-phenols challenging. Accessing meta-phenols needs lengthy synthetic sequences. Herein, we first developed a heterogeneous CO2-mediated CeO2-5CuO catalyst for decarboxylative oxidation of benzoic acids with a more than 80% selectivity to meta-phenols. This technology is based on a traceless directing group relay method. The CeO2-CuO catalysts with different Ce/Cu ratios exhibited controllable reaction selectivity between decarboxylation and decarboxylative oxidation. Spectroscopy experiments and computational studies showed the adsorption state of benzoic acid was found to be crucial for subsequent reaction pathways. The moderate adsorption on CO2-mediated CeO2-5CuO catalyst contributes to the distinct selectivity of phenol. Furthermore, the paddlewheel intermediate facilitates the synthesis of meta-phenols from benzoic acids. This traceless directing group method would promote the development of useful one-pot meta-substituted phenols from bio-based benzoic acids.

13.
Biomacromolecules ; 24(8): 3522-3531, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37285477

RESUMEN

Nowadays, the development of effective modification methods for PLA has gained significant interest because of the wide application of antimicrobial PLA materials in the medical progress. Herein, the ionic liquid (IL) 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide, has been grafted onto the PLA chains successfully in the PLA/IL blending films via electron beam (EB) radiation for the miscibility between PLA and IL. It was found that the existence of IL in the PLA matrix can significantly improve the chemical stability under EB radiation. The Mn of PLA-g-IL copolymer did not change obviously but was just decreased from 6.80 × 104 g/mol to 5.20 × 104 g/mol after radiation with 10 kGy. The obtained PLA-g-IL copolymers showed excellent filament forming property during electrospinning process. The spindle structure on the nanofibers can be completely eliminated after feeding only 0.5 wt % ILs for the improvement of ionic conductivity. Specially, the prepared PLA-g-IL nonwovens exhibited outstanding and durable antimicrobial activity for the enrichment of immobilized ILs on the nanofiber surface. This work provides a feasible strategy to realize the modification of functional ILs onto PLA chains with low EB radiation doses, which may have huge potential application in the medical and packaging industry.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Polímeros , Poliésteres , Antiinfecciosos/farmacología
14.
Foods ; 12(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372626

RESUMEN

Coconut water (CW) is a popular and healthful beverage, and ensuring its quality is crucial for consumer satisfaction. This study aimed to explore the potential of near-infrared spectroscopy (NIRS) and chemometric methods for analyzing CW quality and distinguishing samples based on postharvest storage time, cultivar, and maturity. CW from nuts of Wenye No. 2 and Wenye No. 4 cultivars in China, with varying postharvest storage time and maturities, were subjected to NIRS analysis. Partial least squares regression (PLSR) models were developed to predict reducing sugar and soluble sugar contents, revealing moderate applicability but lacking accuracy, with the residual prediction deviation (RPD) values ranging from 1.54 to 1.83. Models for TSS, pH, and TSS/pH exhibited poor performance with RPD values below 1.4, indicating limited predictability. However, the study achieved a total correct classification rate exceeding 95% through orthogonal partial least squares discriminant analysis (OPLS-DA) models, effectively discriminating CW samples based on postharvest storage time, cultivar, and maturity. These findings highlight the potential of NIRS combined with appropriate chemometric methods as a valuable tool for analyzing CW quality and efficiently distinguishing samples. NIRS and chemometric techniques enhance quality control in coconut water, ensuring consumer satisfaction and product integrity.

15.
Bioresour Technol ; 385: 129415, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37390929

RESUMEN

In this work, a green and robust pretreatment which integrated acetic acid-catalyzed hydrothermal and wet mechanical pretreatment, was developed to efficiently produce high yield (up to 40.12%) of xylooligosaccharides and digestible substrates from Caffeoyl Shikimate Esterase down-regulated and control poplar wood. Subsequently, superhigh yield (more than 95%) of glucose and residual lignin were obtained after a moderate enzymatic hydrolysis. The residual lignin fraction exhibited a well-preserved ß-O-4 linkages (42.06/100Ar) and high S/G ratio (6.42). Subsequently, lignin-derived porous carbon was successfully synthesized, and it exhibited a high specific capacitance of 273.8 F g-1 at 1.0 A g-1 and long cycling stability (remained 98.5% after 10,000 cycles at 5.0 A g-1) compared to control poplar wood, demonstrating that special advantage of this genetically-modified poplar in this integrated process. This work developed an energy-saving and eco-friendly pretreatment technology as a waste-free route for converting different lignocellulosic biomass to multiple products.


Asunto(s)
Esterasas , Lignina , Hidrólisis , Madera
16.
Chem Rev ; 123(8): 4510-4601, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37022360

RESUMEN

Lignin, as a precious resource given to mankind by nature with abundant functional aromatic structures, has drawn much attention in the recent decade from academia to industry worldwide, aiming at harvesting aromatic compounds from this abundant and renewable natural polymer resource. How to efficiently depolymerize lignin to easy-to-handle aromatic monomers is the precondition of lignin utilization. Many strategies/methods have been developed to effectively degrade lignin into monomers, such as the traditional methods of pyrolysis, gasification, liquid-phase reforming, solvolysis, chemical oxidation, hydrogenation, reduction, acidolysis, alkaline hydrolysis, alcoholysis, as well as the newly developed redox-neutral process, biocatalysis, and combinatorial strategies. Therefore, there is a strong demand to systemically summarize these developed strategies and methods and reveal the internal transformation principles of the lignin. Focusing on the topic of lignin depolymerization to aromatic chemicals, this review reorganizes and categorizes the strategies/methods according to their mechanisms, orbiting the center of critical intermediates during the lignin linkage transformation, which includes the critical anionic intermediates, cationic intermediates, organometallic intermediates, organic molecular intermediates, aryl cation radical intermediates, and neutral radical intermediates. The corresponding introduction involves the generation and the transformation chemistry of the critical intermediates via the corresponding C-H/O-H/C-C/C-O chemical bond transformations, leading to the cleavage of the C-C/C-O linkage bonds. Accompanying the brief introduction of lignin chemistry and the final concluding remarks and perspectives on lignin depolymerization, this review aims to provide a current research process of lignin depolymerization, which may provide useful suggestions for this vigorous research field.

17.
Environ Pollut ; 324: 121372, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36858104

RESUMEN

Phytoremediation with energy crops is considered an integrated technology that provides both environment and energy benefits. Herein, the sweet sorghum cultivated on Cd-contaminated farmland (1.21 mg/kg of Cd in the soil) showed promising phytoremediation potential, and the approach for utilizing sorghum stalks was explored. Sweet sorghum bagasse with Cd contamination was pretreated with dilute acid in order to improve enzymatic saccharification and achieve Cd recovery, resulting in harmless and value-added utilization. After pretreatment, hemicelluloses were dramatically degraded, and the lignocellulosic structures were partially deconstructed with xylan removal up to 98.1%. Under the optimal condition (0.75% H2SO4), the highest total sugar yield was 0.48 g/g of raw bagasse; and nearly 98% of Cd was enriched in the liquid phase. Compared with normal biomass, Cd reduced the biomass recalcitrance and further facilitated the deconstruction of biomass under super dilute acid conditions. This work provided an example for the subsequent valorization of Cd-containing biomass and Cd recovery, which will greatly facilitate the development of phytoremediation of heavy metal contaminated soil.


Asunto(s)
Cadmio , Sorghum , Cadmio/metabolismo , Sorghum/química , Biodegradación Ambiental , Hidrólisis , Suelo , Biomasa
18.
Front Oncol ; 13: 1140460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969001

RESUMEN

Gastric cancer is a tumor type characterized by lymph node metastasis and the invasion of local tissues. There is thus a critical need to clarify the molecular mechanisms governing gastric cancer onset and progression to guide the treatment of this disease. Long non-coding RNAs and mRNA expression profiles associated with early and local advanced gastric cancer were examined through microarray analyses, with GO and KEGG analyses being employed as a means of exploring the functional roles of those long non-coding RNAs and mRNAs that were differentially expressed in gastric cancer. In total, 1005 and 1831 lncRNAs and mRNAs, respectively, were found to be differentially expressed between early and local advanced gastric cancer. GO and KEGG analyses revealed several pathways and processes that were dysregulated, including the RNA transport, ECM-receptor interaction, and mRNA splicing pathways. In co-expression networks, E2F1, E2F4, and STAT2 were identified as key transcriptional regulators of these processes. Moreover, thrombospondin-2 was confirmed as being expressed at high levels in more advanced gastric cancer by both the GEO and TCGA databases. RNA-sequencing analyses of SGC-790 cells transfected to express thrombospondin-2 further revealed this gene to enhance NF-kB and TNF pathway signaling activity. These results offer insight into gastric cancer-related regulatory networks and suggest thrombospondin-2 to be an important oncogene that drives the progression of this deadly cancer type.

19.
Nano Lett ; 23(5): 1865-1871, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790333

RESUMEN

The urgent demand for atomically thin, superlubricating, and super wear-resistant materials in micro/nanoelectromechanical systems has stimulated the research of friction-reducing and antiwear materials. However, the fabrication of subnanometer-thick films with superlubricating and super wear-resistant properties under ambient conditions remains a huge challenge. Herein, high-quality monolayer (ML) NbSe2 (∼0.8 nm) with ultralow friction and super wear resistance in an atmospheric environment was successfully grown by chemical vapor deposition (CVD) for the first time. Moreover, compared with few-layered (FL) NbSe2, ML NbSe2 has a lower friction coefficient and better wear resistance. On the basis of density function theory (DFT) calculations, the adhesion and the degree of charge transfer between ML NbSe2 and the substrate is larger than that of the topmost layer to the underlying layers of NbSe2 with two or more layers, which can be used to explain that the ML NbSe2 favors ultralow friction and super wear resistance.

20.
Environ Sci Pollut Res Int ; 30(6): 14838-14848, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36161575

RESUMEN

Exposure to polycyclic aromatic hydrocarbons (PAHs) may cause neurobehavioral changes. This study aimed to explore the underlying mechanism of PAH neurotoxicity in coal miners. Urinary PAH metabolites, neurotransmitters, and oxidative stress biomarkers of 652 coal miners were examined. Subjects were divided into high and low-exposure groups based on the median of total urinary PAH metabolites. Differentially expressed miRNAs were screened from 5 samples in the low-exposure group (≤ 4.88 µmol/mol Cr) and 5 samples in the high-exposure group (> 4.88 µmol/mol Cr) using microarray technology, followed by bioinformatics analysis of the potential molecular functions of miRNA target genes. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate differentially expressed miRNAs. Restricted cubic splines (RCS) were applied to assess the possible dose-response relationships. Compared to the low PAH exposure group, the high-exposure group had higher levels of 5-hydroxytryptamine (5-HT), epinephrine (E), and acetylcholine (ACh), and lower levels of acetylcholinesterase (AChE). 1-OHP had a dose-response relationship with malondialdehyde (MDA), dopamine (DA), 5-HT, and AChE (P for overall associations < 0.05). There were 19 differentially expressed microRNAs in microarray analysis, significantly enriched in the cell membrane, molecular binding to regulate transcription, and several signaling pathways such as PI3K-Akt. And in the validation stage, miR-885-5p, miR-20a-5p, and let-7i-3p showed differences in the low and high-exposure groups (P < 0.05). Changes in neurotransmitters and microRNA expression levels among the coal miners were associated with PAH exposure. Their biological functions are mainly related to the transcriptional regulation of nervous system diseases or signaling pathways of disorders. These findings provide new insights for future research of PAH neurotoxicity.


Asunto(s)
MicroARNs , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Estudios Transversales , Serotonina , Acetilcolinesterasa , Fosfatidilinositol 3-Quinasas , Biomarcadores/análisis , Carbón Mineral/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...