Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nat Commun ; 15(1): 7063, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152127

RESUMEN

Functional coactivation between human brain regions is partly explained by white matter connections; however, how the structure-function relationship varies by function remains unclear. Here, we reference large data repositories to compute maps of structure-function correspondence across hundreds of specific functions and brain regions. We use natural language processing to accurately predict structure-function correspondence for specific functions and to identify macroscale gradients across the brain that correlate with structure-function correspondence as well as cortical thickness. Our findings suggest structure-function correspondence unfolds along a sensory-fugal organizational axis, with higher correspondence in primary sensory and motor cortex for perceptual and motor functions, and lower correspondence in association cortex for cognitive functions. Our study bridges neuroscience and natural language to describe how structure-function coupling varies by region and function in the brain, offering insight into the diversity and evolution of neural network properties.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Relación Estructura-Actividad , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Masculino , Femenino , Adulto , Sustancia Blanca/fisiología , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Lenguaje Natural , Corteza Motora/fisiología , Corteza Motora/anatomía & histología , Cognición/fisiología
2.
Toxics ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195676

RESUMEN

We examined whether mixtures of urinary concentrations of bisphenol A (BPA), parabens and phthalate metabolites were associated with serum lipid levels among 175 pregnant women who enrolled in the Environment and Reproductive Health (EARTH) Study (2005-2017), including triglycerides, total cholesterol, high-density lipoprotein (HDL), non-HDL, and low-density lipoprotein (LDL). We applied Bayesian Kernel Machine Regression (BKMR) and quantile g-computation while adjusting for confounders. In the BKMR models, we found no associations between chemical mixture and lipid levels, e.g., total cholesterol [mean difference (95% CRI, credible interval) = 0.02 (-0.31, 0.34)] and LDL [mean difference (95% CRI) = 0.10 (-0.22, 0.43)], when comparing concentrations at the 75th to the 25th percentile. When stratified by BMI, we found suggestive positive relationships between urinary propylparaben and total cholesterol and LDL among women with high BMI [mean difference (95% CRI) = 0.25 (-0.26, 0.75) and 0.35 (-0.25, 0.95)], but not with low BMI [mean difference (95% CRI) = 0.00 (-0.06, 0.07) and 0.00 (-0.07, 0.07)]. No association was found by quantile g-computation. This exploratory study suggests mixtures of phenol and phthalate metabolites were not associated with serum lipid levels during pregnancy, while there were some suggestive associations for certain BMI subgroups. Larger longitudinal studies with multiple assessments of both exposure and outcome are needed to corroborate these novel findings.

3.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38826324

RESUMEN

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.

4.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826468

RESUMEN

Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.

5.
J Biol Chem ; 300(6): 107377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762174

RESUMEN

Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HIV Tat-specific factor 1 (HTATSF1) Ser748 to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to poly(ADP-ribose) polymerase inhibitors or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis and serves as an indicator of tumor HR status and modulates chemotherapy response.


Asunto(s)
Proteínas Portadoras , Quinasa de la Caseína II , Proteínas de Unión al ADN , Transducción de Señal , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transducción de Señal/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Animales , Femenino , Ratones , Línea Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología
6.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617320

RESUMEN

Preclinical Alzheimer's disease, characterized by the initial accumulation of amyloid and tau pathologies without symptoms, presents a critical opportunity for early intervention. Yet, the interplay between these pathological markers and the functional connectome during this window remains understudied. We therefore set out to elucidate the relationship between the functional connectome and amyloid and tau, as assessed by PET imaging, in individuals with preclinical AD using connectome-based predictive modeling (CPM). We found that functional connectivity predicts tau PET, outperforming amyloid PET models. These models were predominantly governed by linear relationships between functional connectivity and tau. Tau models demonstrated a stronger correlation to global connectivity than underlying tau PET. Furthermore, we identify sex-based differences in the ability to predict regional tau, without any underlying differences in tau PET or global connectivity. Taken together, these results suggest tau is more closely coupled to functional connectivity than amyloid in preclinical disease, and that multimodal predictive modeling approaches stand to identify unique relationships that any one modality may be insufficient to discern.

8.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
9.
Nat Commun ; 15(1): 229, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172111

RESUMEN

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Ratones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Neuronas
10.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260465

RESUMEN

Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD ( App NL-G-F /hMapt ), monitoring brain connectivity by means of resting-state fMRI. While the 4-month-old AD mice are indistinguishable from wild-type controls (WT), decreased connectivity in the default-mode network is significant for the AD mice relative to WT mice by 6 months of age and is pronounced by 9 months of age. In a second cohort of 20-month-old mice with persistent functional connectivity deficits for AD relative to WT, we assess the impact of two-months of oral treatment with a silent allosteric modulator of mGluR5 (BMS-984923) known to rescue synaptic density. Functional connectivity deficits in the aged AD mice are reversed by the mGluR5-directed treatment. The longitudinal application of fMRI has enabled us to define the preclinical time trajectory of AD-related changes in functional connectivity, and to demonstrate a translatable metric for monitoring disease emergence, progression, and response to synapse-rescuing treatment.

11.
iScience ; 26(12): 108175, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047071

RESUMEN

Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%-83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910-0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87-0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools.

12.
Adv Sci (Weinh) ; 10(26): e2301833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395375

RESUMEN

Cartilage damage affects millions of people worldwide. Tissue engineering strategies hold the promise to provide off-the-shelf cartilage analogs for tissue transplantation in cartilage repair. However, current strategies hardly generate sufficient grafts, as tissues cannot maintain size growth and cartilaginous phenotypes simultaneously. Herein, a step-wise strategy is developed for fabricating expandable human macromass cartilage (macro-cartilage) in a 3D condition by employing human polydactyly chondrocytes and a screen-defined serum-free customized culture (CC). CC-induced chondrocytes demonstrate improved cell plasticity, expressing chondrogenic biomarkers after a 14.59-times expansion. Crucially, CC-chondrocytes form large-size cartilage tissues with average diameters of 3.25 ± 0.05 mm, exhibiting abundant homogenous matrix and intact structure without a necrotic core. Compared with typical culture, the cell yield in CC increases 2.57 times, and the expression of cartilage marker collagen type II increases 4.70 times. Transcriptomics reveal that this step-wise culture drives a proliferation-to-differentiation process through an intermediate plastic stage, and CC-chondrocytes undergo a chondral lineage-specific differentiation with an activated metabolism. Animal studies show that CC macro-cartilage maintains a hyaline-like cartilage phenotype in vivo and significantly promotes the healing of large cartilage defects. Overall, an efficient expansion of human macro-cartilage with superior regenerative plasticity is achieved, providing a promising strategy for joint regeneration.


Asunto(s)
Cartílago Articular , Animales , Humanos , Cartílago Articular/metabolismo , Condrocitos/trasplante , Ingeniería de Tejidos , Diferenciación Celular , Regeneración
13.
iScience ; 26(5): 106536, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37187700

RESUMEN

Exponential accumulation of single-cell transcriptomes poses great challenge for efficient assimilation. Here, we present an approach entitled generative pretraining from transcriptomes (tGPT) for learning feature representation of transcriptomes. tGPT is conceptually simple in that it autoregressive models the ranking of a gene in the context of its preceding neighbors. We developed tGPT with 22.3 million single-cell transcriptomes and used four single-cell datasets to evalutate its performance on single-cell analysis tasks. In addition, we examine its applications on bulk tissues. The single-cell clusters and cell lineage trajectories derived from tGPT are highly aligned with known cell labels and states. The feature patterns of tumor bulk tissues learned by tGPT are associated with a wide range of genomic alteration events, prognosis, and treatment outcome of immunotherapy. tGPT represents a new analytical paradigm for integrating and deciphering massive amounts of transcriptome data and it will facilitate the interpretation and clinical translation of single-cell transcriptomes.

14.
Res Sq ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162818

RESUMEN

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks are overlapping rather than disjoint. Our results show that multiple BOLD networks are detected via Ca2+ signals; there is considerable network overlap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks; and, despite similarities, important differences are detected across modalities (e.g., brain region "network diversity"). In conclusion, Ca2+ imaging uncovered overlapping functional cortical organization in the mouse that reflected several, but not all, properties observed with fMRI-BOLD signals.

15.
Psychol Med ; : 1-10, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36891769

RESUMEN

BACKGROUND: The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS: Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS: CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS: This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.

16.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573438

RESUMEN

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Asunto(s)
Atención , Trastorno del Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conjuntos de Datos como Asunto , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/ultraestructura
17.
Cereb Cortex ; 33(10): 6139-6151, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563018

RESUMEN

Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.


Asunto(s)
Conectoma , Envejecimiento Saludable , Humanos , Masculino , Adulto , Femenino , Red en Modo Predeterminado , Caracteres Sexuales , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
18.
Front Dement ; 2: 1126016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39082002

RESUMEN

Alzheimer's disease (AD) takes a more aggressive course in women than men, with higher prevalence and faster progression. Amnestic AD specifically targets the default mode network (DMN), which subserves short-term memory; past research shows relative hyperconnectivity in the posterior DMN in aging women. Higher reliance on this network during memory tasks may contribute to women's elevated AD risk. Here, we applied connectome-based predictive modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human Connectome Project-Aging (HCP-A) dataset (n = 579). We sought to characterize sex-based predictors of memory performance in aging, with particular attention to the DMN. Models were evaluated using cross-validation both across the whole group and for each sex separately. Whole-group models predicted short-term memory performance with accuracies ranging from ρ = 0.21-0.45. The best-performing models were derived from an associative memory task-based scan. Sex-specific models revealed significant differences in connectome-based predictors for men and women. DMN activity contributed more to predicted memory scores in women, while within- and between- visual network activity contributed more to predicted memory scores in men. While men showed more segregation of visual networks, women showed more segregation of the DMN. We demonstrate that women and men recruit different circuitry when performing memory tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry. These findings are consistent with the hypothesis that women draw more heavily upon the DMN for recollective memory, potentially contributing to women's elevated risk of AD.

19.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203602

RESUMEN

Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.


Asunto(s)
Cardiopatías Congénitas , Humanos , Animales , Ratones , Cardiopatías Congénitas/genética , Encéfalo , Ventrículos Cardíacos , Hipoxia , Miocitos Cardíacos , Xenopus , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Proteínas de Xenopus
20.
NPJ Regen Med ; 7(1): 68, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418304

RESUMEN

Stem cell-based tissue regeneration strategies are promising treatments for severe endometrial injuries. However, there are few appropriate seed cells for regenerating a full-thickness endometrium, which mainly consists of epithelia and stroma. Müllerian ducts in female embryonic development develop into endometrial epithelia and stroma. Hence, we first generated human pluripotent stem cells (hPSC)-derived Müllerian duct-like cells (MDLCs) using a defined and effective protocol. The MDLCs are bi-potent, can gradually differentiate into endometrial epithelial and stromal cells, and reconstitute full-thickness endometrium in vitro and in vivo. Furthermore, MDLCs showed the in situ repair capabilities of reconstructing endometrial structure and recovering pregnancy function in full-thickness endometrial injury rats, and their differentiation fate was revealed by single-cell RNA sequencing (scRNA-seq). Our study provides a strategy for hPSC differentiation into endometrial lineages and an alternative seed cell for injured endometrial regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA