Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744865

RESUMEN

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Asunto(s)
Fibrosis , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Animales , Transición Epitelial-Mesenquimal , Apoptosis , Terapia Molecular Dirigida
2.
Macromol Rapid Commun ; 44(17): e2300180, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37379851

RESUMEN

Most sheet facial masks for skincare are made of nonwovens and loaded with liquid active ingredients, which are usually opaque and require additives for long-term preservation. Herein, a Transparent Additive-Free Fibrous (TAFF) facial mask is reported for skin moisturizing. The TAFF facial mask consists of a bilayer fibrous membrane. The inner layer is fabricated by electrospinning functional components of gelatin (GE) and hyaluronic acid (HA) into a solid fibrous membrane to get rid of additives, the outer layer is an ultrathin PA6 fibrous membrane that is highly transparent, especially after absorbing water. The results indicate that the GE-HA membrane can quickly absorb water and become a transparent hydrogel film. By employing the hydrophobic PA6 membrane as the outer layer, directional water transport is achieved, which enables TAFF facial mask with excellent skin moisturizing effect. The skin moisture content is up to 84% ± 7% after placing the TAFF facial mask on the skin for 10 min. In addition, the relative transparency of the TAFF facial mask on the skin reaches 97.0% ± 1.9% when ultrathin PA6 membrane is used as the outer layer. The design of the transparent additive-free facial mask may serve as a guideline for developing new functional facial masks.


Asunto(s)
Cara , Piel , Hidrogeles , Ácido Hialurónico
3.
BMC Microbiol ; 23(1): 11, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36627553

RESUMEN

BACKGROUND: Glutathione is an important bioactive tripeptide and is widely used in the food, medicine, and cosmetics industries. The aim of this study was to provide an efficient method for producing GSH and to explore its synthesis mechanism. Saccharomyces cerevisiae strain HBSD-W08 was screened for GSH production, and its fermentation medium was optimized using single-factor experiments of the Plackett-Burman and central composite rotatable designs. This method was used to analyze the effects of the presence and concentration of various carbon sources, organic and inorganic nitrogen sources, metal ions, and precursor amino acids on GSH production and catalase, superoxide dismutase, and γ-glutamylcysteine synthetase activity. RESULTS: The three most significant factors affecting GSH production were peptone (optimal concentration [OC]: 2.50 g L- 1), KH2PO4 (OC: 0.13 g L- 1), and glutamic acid (OC: 0.10 g L- 1). GSH productivity of HBSD-W08 was obtained at 3.70 g L- 1 in the optimized medium. The activity of γ-GCS, which is a marker for oxidative stress, was found to be highly positively correlated with GSH production. CONCLUSIONS: This finding revealed an underlying relationship between GSH synthesis and oxidative stress, providing useful information for developing effective GSH fermentation control strategies.


Asunto(s)
Glutatión , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fermentación , Medios de Cultivo/metabolismo , Glutatión/metabolismo , Aminoácidos/metabolismo
4.
J Sci Food Agric ; 101(4): 1301-1306, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32790072

RESUMEN

BACKGROUND: L-Glutaminase is considered to be an important industrial enzyme in both the pharmaceutical and food industries, especially for producing functional glutamyl compounds, such as l-theanine. Pseudomonas nitroreducens SP.001 with intracellular l-glutaminase activity has been screened previously. In the present study, three physical permeabilization methods were used to improve l-glutaminase activity. Then, the whole-cell immobilization conditions of permeabilized cells using sodium alginate as an embedding agent were optimized to enhance the enzyme's stability and reusability. The characteristics of the immobilized cells were investigated in comparison with those of permeabilized cells. RESULTS: The results obtained showed that cell permeabilization using osmotic shock with 155 g L-1 sucrose markedly improved enzyme activity. Then, an effective procedure for immobilization of permeabilized P. nitroreducens cells was established. The optimum conditions for cell immobilization were: sodium alginate 40 g L-1 , calcium chloride 30 g L-1 , cell mass 100 g L-1 and a curing time of 3 h. After successful immobilization, characterization studies revealed that the thermostability and pH resistance of l-glutaminase from immobilized cells were enhanced compared to those from permeabilized cells. Moreover, the immobilized biocatalyst could be reused up to 10 times and retained 80% of its activity. CONCLUSION: The stability and reusability of the permeabilized cells were improved through the immobilization. These findings indicated that immobilized whole-cell l-glutaminase from P. nitroreducens SP.001 possesses more potential for various industrial biotechnological applications than free cells. © 2020 Society of Chemical Industry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutaminasa/metabolismo , Pseudomonas/enzimología , Alginatos/química , Proteínas Bacterianas/química , Biocatálisis , Células Inmovilizadas/química , Células Inmovilizadas/enzimología , Glutamatos/metabolismo , Glutaminasa/química , Pseudomonas/química , Pseudomonas/crecimiento & desarrollo
5.
ACS Appl Mater Interfaces ; 9(26): 21723-21729, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28603961

RESUMEN

Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 µm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.

6.
Sci Rep ; 5: 17371, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26610848

RESUMEN

Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) ( PEDOT: PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/ PEDOT: PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/ PEDOT: PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/ PEDOT: PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.

7.
ACS Nano ; 8(11): 11369-76, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25365397

RESUMEN

Low-quality silicon such as upgraded metallurgical-grade (UMG) silicon promises to reduce the material requirements for high-performance cost-effective photovoltaics. So far, however, UMG silicon currently exhibits the short diffusion length and serious charge recombination associated with high impurity levels, which hinders the performance of solar cells. Here, we used a metal-assisted chemical etching (MACE) method to partially upgrade the UMG silicon surface. The silicon was etched into a nanostructured one by the MACE process, associated with removing impurities on the surface. Meanwhile, nanostructured forms of UMG silicon can benefit improved light harvesting with thin substrates, which can relax the requirement of material purity for high photovoltaic performance. In order to suppress the large surface recombination due to increased surface area of nanostructured UMG silicon, a post chemical treatment was used to decrease the surface area. A solution-processed conjugated polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on UMG silicon at low temperature (<150 °C) to form a heterojunction to avoid any impurity diffusion in the silicon substrate. By optimizing the thickness of silicon and suppressing the charge recombination at the interface between thin UMG silicon/PEDOT:PSS, we are able to achieve 12.0%-efficient organic-inorganic hybrid solar cells, which are higher than analogous UMG silicon devices. We show that the modified UMG silicon surface can increase the minority carrier lifetime because of reduced impurity and surface area. Our results suggest a design rule for an efficient silicon solar cell with low-quality silicon absorbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...